题目内容
| 22+1 |
| 22- 1 |
| 32+1 |
| 32- 1 |
| 42+1 |
| 42- 1 |
| 202+ 1 |
| 202-1 |
20
| 169 |
| 420 |
20
.| 169 |
| 420 |
分析:原式可分解为:(
+
)+(
+
)+…(
+
)=20×1+
+
+…+
,然后再据公式a2-1=(a+1)(a-1)及
=
-
进行巧算即可.
| 22-1 |
| 22-1 |
| 2 |
| 22-1 |
| 32-1 |
| 32-1 |
| 2 |
| 32-1 |
| 202-1 |
| 202-1 |
| 2 |
| 202-1 |
| 2 |
| 22-1 |
| 2 |
| 32-1 |
| 2 |
| 202-1 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:
+
+
+ --- +
=(
+
)+(
+
)+…(
+
),
=19×1+(
+
+…+
),
=19+(
+
+…+
),
=19+
+
+…
,
=19+[2×(1-
+
-
+…+
-
)×
],
=19+[1+
-
-
],
=20
.
故答案为:20
.
| 22+1 |
| 22- 1 |
| 32+1 |
| 32- 1 |
| 42+1 |
| 42- 1 |
| 202+ 1 |
| 202-1 |
=(
| 22-1 |
| 22-1 |
| 2 |
| 22-1 |
| 32-1 |
| 32-1 |
| 2 |
| 32-1 |
| 202-1 |
| 202-1 |
| 2 |
| 202-1 |
=19×1+(
| 2 |
| 22-1 |
| 2 |
| 32-1 |
| 2 |
| 202-1 |
=19+(
| 2 |
| (2-1)(2+1) |
| 2 |
| (3-1)×(3+1) |
| 2 |
| (20-1)×(20+1) |
=19+
| 2 |
| 1×3 |
| 2 |
| 2×4 |
| 2 |
| 19×21 |
=19+[2×(1-
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 19 |
| 1 |
| 21 |
| 1 |
| 2 |
=19+[1+
| 1 |
| 2 |
| 1 |
| 20 |
| 1 |
| 21 |
=20
| 169 |
| 420 |
故答案为:20
| 169 |
| 420 |
点评:完成本题要细心分析式中数据,找出数据间的内在联系,然后据巧算公式计算.
练习册系列答案
相关题目