题目内容
| 4 |
| 5 |
| 94 |
| 5 |
| 994 |
| 5 |
| 9994 |
| 5 |
| 99994 |
| 5 |
分析:通过观察,发现每个分数的分子加上1,就变为整数,于是原式变为=(1-
)+(19-
)+(199-
)+(1999-
)+(19999-
),然后整数与分数部分分别相加,得19+199+1999+19999,再把它变成(20-1)+(200-1)+(2000-1)+(20000-1),简算即可.
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 5 |
解答:解:
+
+
+
+
,
=(1-
)+(19-
)+(199-
)+(1999-
)+(19999-
),
=(1+19+199+1999+19999)-
×5,
=1+19+199+1999+19999-1,
=19+199+1999+19999,
=(20-1)+(200-1)+(2000-1)+(20000-1),
=22220-4,
=22216.
| 4 |
| 5 |
| 94 |
| 5 |
| 994 |
| 5 |
| 9994 |
| 5 |
| 99994 |
| 5 |
=(1-
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 5 |
=(1+19+199+1999+19999)-
| 1 |
| 5 |
=1+19+199+1999+19999-1,
=19+199+1999+19999,
=(20-1)+(200-1)+(2000-1)+(20000-1),
=22220-4,
=22216.
点评:注意观察题目中数字构成的特点和规律,善于灵活运用运算定律或运算技巧,巧妙解答.
练习册系列答案
相关题目