题目内容
(1+
+
+…
)×(
+
+
+…+
)-(1+
+
+…+
)×(
+
+
+…+
)
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 99 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 101 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 101 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 99 |
分析:通过观察,此题数字很有特点,根据此规律,可设1+
+
+…
=a,
+
+
+…+
=b,然后把字母代入算式,简算即可.
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 99 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 99 |
解答:解:设1+
+
+…
=a,
+
+
+…+
=b,则:
(1+
+
+…
)×(
+
+
+…+
)-(1+
+
+…+
)×(
+
+
+…+
),=a×(b+
)-(a+
)×b,
=ab+
a-ab-
b,
=
×(a-b),
=
.
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 99 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 99 |
(1+
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 99 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 101 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 101 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 99 |
| 1 |
| 101 |
| 1 |
| 101 |
=ab+
| 1 |
| 101 |
| 1 |
| 101 |
=
| 1 |
| 101 |
=
| 1 |
| 101 |
点评:解答此题,应认真分析,用字母代替算式,使运算简便.
练习册系列答案
相关题目