题目内容
计算:
+
+
+
+
+
+
+
+
+…+
+
+…+
+
+
+…+
+
.
| 1 |
| 1 |
| 1 |
| 2 |
| 2 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 3 |
| 3 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 1999 |
| 2 |
| 1999 |
| 1998 |
| 1999 |
| 1999 |
| 1999 |
| 1998 |
| 1999 |
| 2 |
| 1999 |
| 1 |
| 1999 |
分析:因为
+
+
+…+
+
+
+…
=
=
=k,所以,原式=1+2+3+…+1999,由此据高斯求和进行巧算即可:项数=(末项-首项)÷公差+1,等差数列和=(首项+末项)×项数÷2.
| 1 |
| k |
| 2 |
| k |
| 3 |
| k |
| k |
| k |
| k-1 |
| k |
| k-2 |
| k |
| 1 |
| k |
| 1+2+3+…+k+k-1+k-2+k-3+…+1 |
| k |
| k(k+1)-k |
| k |
解答:解:因为
+
+
+…+
+
+
+…
=
=
=k,
所以:
+
+
+
+
+
+
+
+
+…+
+
+…
+
+…+
+
,
=1+2+3+4+…+1999,
=(1+1999)×[(1999-1)÷1+1]÷2,
=1999×2000÷2,
=1999000.
| 1 |
| k |
| 2 |
| k |
| 3 |
| k |
| k |
| k |
| k-1 |
| k |
| k-2 |
| k |
| 1 |
| k |
| 1+2+3+…+k+k-1+k-2+k-3+…+1 |
| k |
| k(k+1)-k |
| k |
所以:
| 1 |
| 1 |
| 1 |
| 2 |
| 2 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 3 |
| 3 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 1999 |
| 2 |
| 1992 |
| 1998 |
| 1999 |
| 1999 |
| 1999 |
| 2 |
| 1999 |
| 1 |
| 1999 |
=1+2+3+4+…+1999,
=(1+1999)×[(1999-1)÷1+1]÷2,
=1999×2000÷2,
=1999000.
点评:完成本题要认真分析式中数据,从中找出内在规律,然后据规律进行巧算.
练习册系列答案
相关题目