题目内容

1.已知两个圆柱的高相等,它们的底面半径之比是1:2,那么它们的体积之比是1:4.

分析 设小圆柱的高为h,底面半径为r,则大圆柱的高为h,底面半径为2r,分别代入圆柱的体积公式,即可表示出二者的体积,再用小圆柱体积比大圆柱体积即可得解.

解答 解:设小圆柱的高为h,底面半径为r,则大圆柱的高为h,底面半径为2r,
(πr2h):[π(2r)2h]
=(πr2h):[4πr2h]
=1:4
答:它们体积的比是1:4.
故答案为:1:4.

点评 解答此题的关键是:设出小圆柱的底面半径和高,分别表示出二者的体积.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网