题目内容
分子为1的分数叫做单位分数.早在三千多年前,古埃及人就利用单位分数进行书写和计算.将一个分数分拆为几个不同的单位分数之和是一个古老且有意义的问题.例如:
=
=
+
=
+
;
=
=
=
+
=
+
.
(1)仿照上例分别把分数
和
分拆成两个不同的单位分数之和.
=
=
(2)在上例中,
=
+
,又因为
=
=
=
+
=
+
,所以:
=
+
+
,即
可以写成三个不同的单位分数之和.按照这样的思路,它也可以写成四个,甚至五个不同的单位分数之和.根据这样的思路,探索分数
能写出哪些两个以上的不同单位分数的和?(写对一个得一分)
| 3 |
| 4 |
| 1+2 |
| 4 |
| 1 |
| 4 |
| 2 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
| 2 |
| 3 |
| 4 |
| 6 |
| 1+3 |
| 6 |
| 1 |
| 6 |
| 3 |
| 6 |
| 1 |
| 6 |
| 1 |
| 2 |
(1)仿照上例分别把分数
| 3 |
| 8 |
| 2 |
| 5 |
| 3 |
| 8 |
| 2 |
| 5 |
(2)在上例中,
| 3 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 6 |
| 1+2 |
| 6 |
| 1 |
| 6 |
| 2 |
| 6 |
| 1 |
| 6 |
| 1 |
| 3 |
| 3 |
| 4 |
| 1 |
| 4 |
| 1 |
| 6 |
| 1 |
| 3 |
| 3 |
| 4 |
| 3 |
| 8 |
考点:分数的拆项
专题:运算顺序及法则
分析:(1)将一个分数分拆为几个不同的单位分数之和,要注意“不同的单位分数”,即单位分数不相同.先把分子进行拆分,有的要进行化简,即可得出答案.
(2)先把
拆分为
+
,再分别把
和
进行拆分,…,从而解决问题.
(2)先把
| 3 |
| 8 |
| 1 |
| 8 |
| 1 |
| 4 |
| 1 |
| 8 |
| 1 |
| 4 |
解答:
解:(1)
=
=
+
=
+
=
=
=
+
=
+
(2)
=
=
+
=
+
因为
=
=
=
+
所以
=
+
=
+
+
又因为
=
=
=
+
所以
=
+
=
+
+
所以
=
+
+
+
| 3 |
| 8 |
| 1+2 |
| 8 |
| 1 |
| 8 |
| 2 |
| 8 |
| 1 |
| 8 |
| 1 |
| 4 |
| 2 |
| 5 |
| 6 |
| 15 |
| 1+5 |
| 15 |
| 1 |
| 15 |
| 5 |
| 15 |
| 1 |
| 15 |
| 1 |
| 3 |
(2)
| 3 |
| 8 |
| 1+2 |
| 8 |
| 1 |
| 8 |
| 2 |
| 8 |
| 1 |
| 8 |
| 1 |
| 4 |
因为
| 1 |
| 8 |
| 3 |
| 24 |
| 1+2 |
| 24 |
| 1 |
| 24 |
| 1 |
| 12 |
所以
| 3 |
| 8 |
| 1 |
| 8 |
| 1 |
| 4 |
| 1 |
| 24 |
| 1 |
| 12 |
| 1 |
| 4 |
又因为
| 1 |
| 4 |
| 3 |
| 12 |
| 1+2 |
| 12 |
| 1 |
| 12 |
| 1 |
| 6 |
所以
| 3 |
| 8 |
| 1 |
| 8 |
| 1 |
| 4 |
| 1 |
| 8 |
| 1 |
| 12 |
| 1 |
| 6 |
所以
| 3 |
| 8 |
| 1 |
| 24 |
| 1 |
| 12 |
| 1 |
| 12 |
| 1 |
| 6 |
点评:先看懂分数拆分的方法,根据拆分方法解决问题.
练习册系列答案
相关题目