题目内容
计算:
(1)(1-
×
)×(1-
×
)×(1-
×
)×…×(1-
×
)
(2)
.
(1)(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2003 |
| 1 |
| 2003 |
(2)
| 1234567890 |
| 12345678912-1234567890×1234567892 |
考点:分数的巧算
专题:计算问题(巧算速算)
分析:(1)运用平方差公式,原式变为
×
×
×
×
×
×…×
,很容易可以看出:除了第一项和最后一项,其它各项均可对消,因为第2n项和第2n+1项互为倒数.所以中间消掉后只剩下第一项和最后一项,据此解答.
(2)分母部分通过数字拆分,减号后面的部分运用平方差公式计算,分母结果为1,因此,此题最后得数为分子部分1234567890.
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 3 |
| 4 |
| 3 |
| 3 |
| 4 |
| 5 |
| 4 |
| 4012010 |
| 4012009 |
(2)分母部分通过数字拆分,减号后面的部分运用平方差公式计算,分母结果为1,因此,此题最后得数为分子部分1234567890.
解答:
解:(1)(1-
×
)×(1-
×
)×(1-
×
)×…×(1-
×
)
=(1-
)×(1+
)×(1-
)×(1+
)×(1-
)×(1+
)×…×
×
=
×
×
×
×
×
×…×
×
=
×
=
(2)
=
=
=1234567890.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2003 |
| 1 |
| 2003 |
=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2002 |
| 2003 |
| 2002 |
=
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 3 |
| 4 |
| 3 |
| 3 |
| 4 |
| 5 |
| 4 |
| 2003 |
| 2002 |
| 2004 |
| 2003 |
=
| 1 |
| 2 |
| 2004 |
| 2003 |
=
| 1002 |
| 2003 |
(2)
| 1234567890 |
| 12345678912-1234567890×1234567892 |
=
| 1234567890 |
| 12345678912-(1234567891-1)×(1234567891+1) |
=
| 1234567890 |
| 12345678912-(12345678912-1) |
=1234567890.
点评:此题主要考查学生能否根据数字特点,通过转化的数学思想,巧妙灵活地运用平方差公式,使复杂的问题简单化.
练习册系列答案
相关题目