题目内容
计算:0.
×0.
+0.
×0.
+…3.
×3.
= .
| ? |
| 1 |
| ? |
| 2 |
| ? |
| 2 |
| ? |
| 3 |
| ? |
| 2 |
| ? |
| 3 |
考点:小数的巧算
专题:计算问题(巧算速算)
分析:先把循环小数化为分数,原式变为
,再把分子化为1×(1+1)+2×(1+2)+3×(1+3)+…28×(1+28)+29×(1+29),然后运用乘法分配律计算,变为:(1+2+3+…28+29)+(1×1+2×2+3×3+…28×28+29×29),再运用以下公式计算即可:1+2+3+…+n=(1+n)×n÷2,1×1+2×2+3×3+4×4+…+n×n=n(n+1)(2n+1)÷6.
| 1×2+2×3+3×4+…+29×30 |
| 9×9 |
解答:
解:0.
×0.
+0.
×0.
+…3.
×3.
=
×
+
×
+…+
×
=
分子:l×2+2×3+3×4+…+28×29+29×30
=1×(1+1)+2×(1+2)+3×(1+3)+…28×(1+28)+29×(1+29)
=1+1×1+2+2×2+3+3×3+…28+28×28+29+29×29
=(1+2+3+…28+29)+(1×1+2×2+3×3+…28×28+29×29)
=(1+29)×29÷2+29(29+1)(2×29+1)÷6
=435+8555
=8990
分母为81
原式=8990÷81=
.
故答案为:
.
| ? |
| 1 |
| ? |
| 2 |
| ? |
| 2 |
| ? |
| 3 |
| ? |
| 2 |
| ? |
| 3 |
=
| 1 |
| 9 |
| 2 |
| 9 |
| 2 |
| 9 |
| 3 |
| 9 |
| 29 |
| 9 |
| 30 |
| 9 |
=
| 1×2+2×3+3×4+…+29×30 |
| 9×9 |
分子:l×2+2×3+3×4+…+28×29+29×30
=1×(1+1)+2×(1+2)+3×(1+3)+…28×(1+28)+29×(1+29)
=1+1×1+2+2×2+3+3×3+…28+28×28+29+29×29
=(1+2+3+…28+29)+(1×1+2×2+3×3+…28×28+29×29)
=(1+29)×29÷2+29(29+1)(2×29+1)÷6
=435+8555
=8990
分母为81
原式=8990÷81=
| 8990 |
| 81 |
故答案为:
| 8990 |
| 81 |
点评:解答此题应掌握循环小数化分数的方法以及两个公式1+2+3+…+n=(1+n)×n÷2,1×1+2×2+3×3+4×4+…+n×n=n(n+1)(2n+1)÷6.
练习册系列答案
相关题目