题目内容

证明:任取8个自然数,必有两个数的差是7的倍数.
考点:抽屉原理,数的整除特征
专题:整除性问题
分析:如果两个整数a、b,它们除以自然数m的余数相同,那么它们的差a-b是m的倍数.这8个自然数中有2个自然数,它们除以7的余数相同.可以把所有自然数按被7除所得的7种不同的余数0、1、2、3、4、5、6分成七类.也就是7个抽屉.任取8个自然数,根据抽屉原理,必有两个数在同一个抽屉中,也就是它们除以7的余数相同,因此这两个数的差一定是7的倍数.
解答: 解:如果两个整数a、b,它们除以自然数m的余数相同,那么它们的差a-b是m的倍数.根据这个性质,这8个自然数中有2个自然数,它们除以7的余数相同.
把所有自然数按被7除所得的7种不同的余数0、1、2、3、4、5、6分成七类.也就是7个抽屉.
任取8个自然数,根据抽屉原理,必有两个数在同一个抽屉中,也就是它们除以7的余数相同,因此这两个数的差一定是7的倍数.
故任取8个自然数,必有两个数的差是7的倍数.
点评:解答本题可以根据抽屉原理进行解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网