题目内容

有四个自然数1、a、b、c,满足a+b+c=2001,且1<a<b<c,这四个小自然数两两求和可得到6个不同的数.把这6个数从小到大排列,求相邻两数的差,又得到5个数,这5个数恰都相等,则C=
 
考点:整数的裂项与拆分
专题:整数的分解与分拆
分析:这六个数从小到大排列分别是1+a,1+b,1+c,a+b,a+c,b+c.因为“相邻的差,都相等”,就说明上面六个数是等差数列.那么取前三项,1+a+1+c=2(1+b),得到a+c=2b
又已知a+b+c=2001,那么可得到:b=667.取1+b,1+c,a+b,得到1+b+a+b=2(1+c),整理得2b+a=1+2c,即2c-a=1333,又a+c=2b,a+c=1334把a=1334-c代入2c-a=1333可求出c的值是多少.
解答: 解:把这六个数从小到大排列分别是1+a,1+b,1+c,a+b,a+c,b+c.
因为“相邻的差,都相等”,就说明上面六个数是等差数列.那么取前三项,1+a+1+c=2(1+b),得到a+c=2b
a+b+c=2001
   3b=2001
    b=667.
取1+b,1+c,a+b,得到
1+b+a+b=2(1+c)
   2b+a=1+2c
   2c-a=1333,
a+c=2b
a+c=1334
把a=1334-c代入2c-a=1333
2c-(1334-c)=1333
      3c-1334=1333
           3c=2667
            c=889
答:c=889.
故答案为:889.
点评:本题的关键是把两两相加得到的6个数按顺序排列大小,再根据相邻两数的差相等,确定是等差数列,再进行解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网