题目内容
如图所示,场源O处有一正电荷,一电子在电场、磁场中做匀速圆周运动(不计重力).某时刻电场消失,电子仍在磁场中运动的速度v、半径r、周期T的可以情况是( )
![]() |
试题答案
D
| 4 |
| 3 |
| 3 |
| q |
| m |
如图所示,在x轴上方存在着沿y轴负方向的匀强电场,电场强度为E,在x轴下方有一垂直纸面向外的匀强磁场,磁感应强度为B。现在坐标原点O处有一正离子源,沿y轴负方向发射比荷均为c的正离子。由于正离子的初速度不同,它们速度第一次为零时的位置不同,所需时间也不一样。
(1)写出正离子从坐标原点到速度第一次为零,所需时间与初速度关系的表达式;
(2)求具有不同初速度的正离子速度第一次为零的位置构成的曲线方程,并指出是什么曲线。
![]()
如图所示,平行板电容器MN竖直放置,极板长为L,两板间的距离也等于L。由离子源产生的带正电粒子的比荷q/m=1.0×1010C/Kg,以v0=1.0×106m/s的速度从板间的某处竖直向上进入平行板,在两板之间加一个适当的偏转电压U,可使粒子恰好从N板的边缘处飞出,且粒子的速度大小变为v=2.0×106m/s,不计粒子的重力,求:[ ]
【小题1】偏转电压U多大?[ ]
【小题2】以N板的边缘为原点,建立图示的坐标系xoy,在y轴右侧有一个圆心位于x轴、半径r=0.01m的圆形磁场区域,磁感应强度B=0.01T,方向垂直纸面向外,有一垂直于x轴的面积足够大的竖直荧光屏PQ置于某处。若圆形磁场可沿x轴移动,圆心O’在x轴上的移动范围为[0.01m,+∞],发现粒子打在荧光屏上方最远点的位置为y=2
cm,求粒子打在荧光屏下方最远点的位置坐标。![]()
如图所示,在直角坐标系的原点O 处有一放射源,向四周均匀发射速度大小相等、方向都平行于纸面的带电粒子。在放射源右侧有一很薄的挡板,垂直于x 轴放置,挡板与xoy 平面交线的两端M、N 正好与原点O 构成等边三角形,O′ 为挡板与x 轴的交点。在整个空间中,有垂直于xoy 平面向外的匀强磁场(图中未画出),带电粒子在磁场中沿顺时针方向做匀速圆周运动。已知带电粒子的质量为m,带电荷量大小为q,速度大小为υ,MN 的长度为L。(不计带电粒子的重力及粒子间的相互作用)![]()
(1)确定带电粒子的电性;
(2)要使带电粒子不打在挡板上,求磁感应强度的最小值;
(3)要使MN 的右侧都有粒子打到,求磁感应强度的最大值。(计算过程中,要求画出各临界状态的轨迹图)
如图所示,在直角坐标系的原点O 处有一放射源,向四周均匀发射速度大小相等、方向都平行于纸面的带电粒子。在放射源右侧有一很薄的挡板,垂直于x 轴放置,挡板与xoy 平面交线的两端M、N 正好与原点O 构成等边三角形,O′ 为挡板与x 轴的交点。在整个空间中,有垂直于xoy 平面向外的匀强磁场(图中未画出),带电粒子在磁场中沿顺时针方向做匀速圆周运动。已知带电粒子的质量为m,带电荷量大小为q,速度大小为υ,MN 的长度为L。(不计带电粒子的重力及粒子间的相互作用)
![]()
(1)确定带电粒子的电性;
(2)要使带电粒子不打在挡板上,求磁感应强度的最小值;
(3)要使MN 的右侧都有粒子打到,求磁感应强度的最大值。(计算过程中,要求画出各临界状态的轨迹图)
查看习题详情和答案>>
![]()
(1)当加速电场极板电压U=U0,求离子进入磁场中做圆周运动的半径R;
(2)在OQ上有一点P,P点到O点距离为L,当加速电场极板电压U取哪些值时,才能保证离子通过P点?
查看习题详情和答案>>