20.(10分)一定质量的理想气体从状态a经历了温度缓慢升高到状态d的变化,下面的表格和V-T图各记录了其部分变化过程,试求:
(1) 温度325K时气体的压强。
(2) 温度250K时气体的体积。
|
状态 |
a |
b |
|
压强p/Pa |
0.75×105 |
0.90×105 |
|
温度T/K |
250 |
300 |
19.
(7分)如图(a)所示,两个相同的盛水容器,密闭时装有相同水位的水。现在它们顶部各插有一根两端开口的玻璃管,甲容器中的玻璃管下端插入水中,乙容器中的玻璃管下端在水面上方。若打开容器底部的阀门,两个容器中均有水流出,在开始的一段时间内,水流出的速度不变的是
。(选填“甲”或“乙”)
某同学根据这一现象,猜测水流速度可能与水面上空气的压强有关,他为了验证这一猜想,设计了如图(b)所示的装置,阀门K2控制的容器底部出水小孔是水平的。利用阀门K1可以改变密闭容器内水面上方气体的压强,利用平抛运动知识可获得K2刚打开时流出水的初速度。在一次实验中水深h=1m保持不变的情况下,测出水刚流出时的初速度和对应的水面上气体压强的数据记录如下表所示:
|
压强(×105pa) |
0.98 |
1.08 |
1.22 |
1.40 |
1.62 |
|
初速度(m/s) |
4.01 |
5.99 |
8.00 |
9.99 |
11.99 |
该同学根据表格中数据,推得水面上气体的压强与水流初速度的关系为 ,并推出外界大气压强值为 (水的密度ρ=1.0×103kg/m3,重力加速度g=10m/s2)。
18.
(5分)学了法拉第电磁感应定律Eµ 后,为了定量验证感应电动势E与时间△t成反比,某小组同学设计了如图所示的一个实验装置:线圈和光电门传感器固定在水平光滑轨道上,强磁铁和挡光片固定在运动的小车上。每当小车在轨道上运动经过光电门时,光电门会记录下挡光片的挡光时间△t,同时触发接在线圈两端的电压传感器记录下在这段时间内线圈中产生的感应电动势E。利用小车末端的弹簧将小车以不同的速度从轨道的最右端弹出,就能得到一系列的感应电动势E和挡光时间△t。
在一次实验中得到的数据如下表:
|
次数 测量值 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
|
E/V |
0.116 |
0.136 |
0.170 |
0.191 |
0.215 |
0.277 |
0.292 |
0.329 |
|
△t/×10-3s |
8.206 |
7.486 |
6.286 |
5.614 |
5.340 |
4.462 |
3.980 |
3.646 |
(1)观察和分析该实验装置可看出,在实验中,每次测量的△t时间内,磁铁相对线圈运动的距离都__________(选填“相同”或“不同”),从而实现了控制__________不变;
(2)在得到上述表格中的数据之后,为了验证E与△t成反比,他们想出两种办法处理数据:第一种是计算法:算出____________________,若该数据基本相等,则验证了E与△t成反比;第二种是作图法:在直角坐标系中作_________________关系图线,若图线是基本过坐标原点的倾斜直线,则也可验证E与△t成反比。