22. (本小题满分14分)

,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.

(1)求轨迹E的方程,并说明该方程所表示曲线的形状;

(2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;

(3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.

解:(1)因为,,,

所以,   即.

当m=0时,方程表示两直线,方程为;

时, 方程表示的是圆

时,方程表示的是椭圆;

时,方程表示的是双曲线.

(2).当时, 轨迹E的方程为,设圆心在原点的圆的一条切线为,解方程组,即,

要使切线与轨迹E恒有两个交点A,B,

则使△=,

,即,    且

,

要使,  需使,即,

所以,  即,  即恒成立.

所以又因为直线为圆心在原点的圆的一条切线,

所以圆的半径为,, 所求的圆为.

当切线的斜率不存在时,切线为,与交于点也满足.

综上, 存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且.

(3)当时,轨迹E的方程为,设直线的方程为,因为直线与圆C:(1<R<2)相切于A1, 由(2)知,  即   ①,

因为与轨迹E只有一个公共点B1,

由(2)知,

有唯一解

则△=,   即,   ②

由①②得,  此时A,B重合为B1(x1,y1)点,

,所以,,

B1(x1,y1)点在椭圆上,所以,所以,

在直角三角形OA1B1中,因为当且仅当时取等号,所以,即

时|A1B1|取得最大值,最大值为1.

徐洪艳制作

 0  406453  406461  406467  406471  406477  406479  406483  406489  406491  406497  406503  406507  406509  406513  406519  406521  406527  406531  406533  406537  406539  406543  406545  406547  406548  406549  406551  406552  406553  406555  406557  406561  406563  406567  406569  406573  406579  406581  406587  406591  406593  406597  406603  406609  406611  406617  406621  406623  406629  406633  406639  406647  447090 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网