[例1]设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子,现将这五个球放入5个盒子内

(1)只有一个盒子空着,共有多少种投放方法?

(2)没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法?

(3)每个盒子内投放一球,并且至少有两个球的编号与盒子编号是相同的,有多少种投放方法?

解:(1) =1200(种)     (2)-1=119(种)          

(3)不满足的情形:第一类,恰有一球相同的放法:×9=45

第二类,五个球的编号与盒子编号全不同的放法:

  先让1号球放,1号球放到哪个盒中就让哪个球放,……

有 4×(2+3×3)=44 (种) , ∴ 满足条件的放法数为:-45-44=31(种)

  [例2]某运输公司有3个车队,每个车队有10辆汽车, 现从这3个车队中选派6辆汽车执行一项运输任务,每个车队至少1辆共有多少种选派方法?

  分析:这里所谓不同的选派方法,只是每个车队派车数目的不同,是相同元素的分组问题--用“插板法”

  解:把6个派车指标排成一排,是一种排法,有5个空,插2个板,分成3组即可,共有   =10(种)

拓展引伸:方程x+y+z=7有多少组正整数解?(看成7个相同的元素分给3人)

  若求方程x+y+z=7有多少组自然数解呢?(让3人每人拿出1个元素,如上法分10个元素)

[例3]某学习小组有8名同学,从男生中选2人,女生中选1人参加数学、物理、化学三种竞赛,要求每科均有一人参加,共有180种不同的选法,那么该小组中共有男女同学多少人?

解:设有男生n人,女生8-n人,则有即(n-1)n(8-n)=60.

60的小于等于7的因数有1、2、3、4、5、6,因为n-1和n相邻,

∴n=5,8-n=3,即男生5人,女生3人,或n=6,8-n=2,即男生6人,女生2人。

◆  提炼方法:1.引进待定的未知数,列方程求解;

2.“先取元素,后排顺序”.一类重要题型和方法。

[例4]一栋7层的楼房备有电梯,现有A,B,C,D,E五人从一楼进电梯上楼,求

(1)有且仅有一人要上7楼,且甲不在2楼下电梯的所有可能情况种数.

(2)在(1)的条件下,一层只能下1个人,共有多少种情况?

解: (1)分A上不上7楼两类:

 A上7楼,有54种; A不上7楼,有4×4×43种.

共有54+4×4×43=1649种.

(2)分2楼下人和不下人两类,每类再分A上不上7楼两种情况.

2楼下人,有种;  2楼不下人,有

∴共有 =504种情况.

提炼方法:题(1)是计数原理,题(2)是排列组合,应注意区分.

[研讨.欣赏](1)一条长椅上有9个座位,3个人坐,若相邻2人之间至少有2个空椅子,共有几种不同的坐法?

(2)一条长椅上有7个座位,4个人坐,要求3个空位中,恰有2个空位相邻,共有多少种不同的坐法?

解:(1)先将3人(用×表示)与4张空椅子(用□表示)排列如图(×□□×□□×),这时共占据了7张椅子,还有2张空椅子,一是分开插入,如图中箭头所示(↓×□↓□×□↓□×↓),从4个空当中选2个插入,有C种插法;二是2张同时插入,有C种插法,再考虑3人可交换有A种方法.

所以,共有A(C+C)=60(种).

下面再看另一种构造方法:

先将3人与2张空椅子排成一排,从5个位置中选出3个位置排人,另2个位置排空椅子,有AC种排法,再将4张空椅子中的每两张插入每两人之间,只有1种插法,所以所求的坐法数为A·C=60.

(2)可先让4人坐在4个位置上,有A种排法,再让2个“元素”(一个是两个作为一个整体的空位,另一个是单独的空位)插入4个人形成的5个“空当”之间,有A种插法,所以所求的坐法数为A·A=480.

 0  406214  406222  406228  406232  406238  406240  406244  406250  406252  406258  406264  406268  406270  406274  406280  406282  406288  406292  406294  406298  406300  406304  406306  406308  406309  406310  406312  406313  406314  406316  406318  406322  406324  406328  406330  406334  406340  406342  406348  406352  406354  406358  406364  406370  406372  406378  406382  406384  406390  406394  406400  406408  447090 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网