例1(08山东)设函数
,已知
和
为
的极值点.
(Ⅰ)求
和
的值;
(Ⅱ)讨论
的单调性;
(Ⅲ)设
,试比较
与
的大小.
解:(Ⅰ)因为![]()
,
又
和
为
的极值点,所以
,
因此![]()
解方程组得
,
.
(Ⅱ)因为
,
,
所以
,
令
,解得
,
,
.
因为当![]()
时,
;
当
时,
.
所以
在
和
上是单调递增的;
在
和
上是单调递减的.
(Ⅲ)由(Ⅰ)可知
,
故
,
令
,
则
.
令
,得
,
因为
时,
,
所以
在
上单调递减.
故
时,
;
因为
时,
,
所以
在
上单调递增.
故
时,
.
所以对任意
,恒有
,又
,
因此
,
故对任意
,恒有
.
说明:本题主要考查函数的极值及利用导数解决函数单调性问题,另外利用导数证明不等式也是09年高考不科忽视的考查方向.
例2.(08北京)已知函数
,求导函数
,并确定
的单调区间.
解:![]()
![]()
.
令
,得
.
当
,即
时,
的变化情况如下表:
|
|
|
|
|
|
|
|
|
0 |
|
|
当
,即
时,
的变化情况如下表:
|
|
|
|
|
|
|
|
|
|
0 |
|
所以,当
时,函数
在
上单调递减,在
上单调递增,
在
上单调递减.
当
时,函数
在
上单调递减,在
上单调递增,在
上单调递减.
当
,即
时,
,所以函数
在
上单调递减,在
上单调递减.
例3.(08天津)已知函数
,其中
.
(Ⅰ)若曲线
在点
处的切线方程为
,求函数
的解析式;
(Ⅱ)讨论函数
的单调性;
(Ⅲ)若对于任意的
,不等式
在
上恒成立,求
的取值范围.
解:(Ⅰ)
,由导数的几何意义得
,于是
.
由切点
在直线
上可得
,解得
.
所以函数
的解析式为
.
(Ⅱ)
.
当
时,显然
(
).这时
在
,
内是增函数.
当
时,令
,解得
.
当
变化时,
,
的变化情况如下表:
|
|
|
|
|
|
|
|
|
|
+ |
0 |
- |
- |
0 |
+ |
|
|
↗ |
极大值 |
↘ |
↘ |
极小值 |
↗ |
所以
在
,
内是增函数,在
,(0,
)内是减函数.
(Ⅲ)由(Ⅱ)知,
在
上的最大值为
与
中的较大者,对于任意的
,不等式
在
上恒成立,当且仅当
,即
,对任意的
成立.
从而得
,所以满足条件的
的取值范围是
.
说明:本小题主要考查导数的几何意义、利用导数研究函数的单调性、解不等式等基础知识,考查运算能力、综合分析和解决问题的能力.
例4.(08湖北)水库的蓄水量随时间而变化,现用t表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于t的近似函数关系式为
V(t)=![]()
(Ⅰ)该水库的蓄水量小于50的时期称为枯水期.以i-1<t<i表示第i月份(i=1,2,…,12),问一年内哪几个月份是枯水期?
(Ⅱ)求一年内该水库的最大蓄水量(取e=2.7计算).
解:(Ⅰ)①当0<t
10时,V(t)=(-t2+14t-40)![]()
化简得t2-14t+40>0,
解得t<4,或t>10,又0<t
10,故0<t<4.
②当10<t
12时,V(t)=4(t-10)(3t-41)+50<50,
化简得(t-10)(3t-41)<0,
解得10<t<
,又10<t
12,故 10<t
12.
综合得0<t<4,或10<t
12,
故知枯水期为1月,2月, 3月,4月,11月,12月共6个月.
(Ⅱ)由(Ⅰ)知:V(t)的最大值只能在(4,10)内达到.
由V′(t)=
![]()
令V′(t)=0,解得t=8(t=-2舍去).
当t变化时,V′(t) 与V (t)的变化情况如下表:
|
t |
(4,8) |
8 |
(8,10) |
|
V′(t) |
+ |
0 |
- |
|
V(t) |
|
极大值 |
|
由上表,V(t)在t=8时取得最大值V(8)=8e2+50-108.32(亿立方米).
故知一年内该水库的最大蓄水量是108.32亿立方米
说明:本小题主要考查函数、导数和不等式等基本知识,考查用导数求最值和综合运用数学知识解决实际问题能力.
例5.(08陕西)已知函数
(
且
,
)恰有一个极大值点和一个极小值点,其中一个是
.
(Ⅰ)求函数
的另一个极值点;
(Ⅱ)求函数
的极大值
和极小值
,并求
时
的取值范围.
解:(Ⅰ)
,由题意知
,
即得
,(*)
,
.
由
得
,
由韦达定理知另一个极值点为
(或
).
(Ⅱ)由(*)式得
,即
.
当
时,
;当
时,
.
(i)当
时,
在
和
内是减函数,在
内是增函数.
,
,
由
及
,解得
.
(ii)当
时,
在
和
内是增函数,在
内是减函数.
,![]()
恒成立.
综上可知,所求
的取值范围为
.
例6.求证下列不等式
(1)
![]()
(2)
![]()
(3)
![]()
证明:(1)
![]()
∴
为
上
∴
恒成立
∴
![]()
![]()
∴
在
上
∴
恒成立
(2)原式
令
![]()
∴
∴
![]()
![]()
∴ ![]()
(3)令
![]()
![]()
∴ ![]()
∴ ![]()
说明:利用导数证明不等式这一部分内容不可忽视,它本质是还是考查利用导数研究函数的单调性及最值问题。