摘要:12.已知数列{an}的前n项和为Sn.满足log2(1+Sn)=n+1.求数列的通项公式. 解:Sn满足log2(1+Sn)=n+1.∴1+Sn=2n+1. ∴Sn=2n+1-1. ∴a1=3.an=Sn-Sn-1=(2n+1-1)-(2n-1)=2n(n≥2). ∴{an}的通项公式为an=
网址:http://m.1010jiajiao.com/timu_id_4442872[举报]
已知数列{an}的前n项和为Sn,满足Sn=2an+n2-4n(n=1,2,3,…).
(Ⅰ)写出数列{an}的前三项a1,a2,a3;
(Ⅱ)求证:数列{an-2n+1}为等比数列;
(Ⅲ)求Sn. 查看习题详情和答案>>
(Ⅰ)写出数列{an}的前三项a1,a2,a3;
(Ⅱ)求证:数列{an-2n+1}为等比数列;
(Ⅲ)求Sn. 查看习题详情和答案>>
已知数列{an}的前n项和为sn,满足Sn=2an-2n(n∈N+),
(1)求数列{an}的通项公式an;
(2)若数列bn满足bn=log2(an+2),Tn为数列{
}的前n项和,求Tn
(3)(只理科作)接(2)中的Tn,求证:Tn≥
.
查看习题详情和答案>>
(1)求数列{an}的通项公式an;
(2)若数列bn满足bn=log2(an+2),Tn为数列{
| bn |
| an+2 |
(3)(只理科作)接(2)中的Tn,求证:Tn≥
| 1 |
| 2 |