摘要:11.已知数列{an}的前n项和Sn.求数列{an}的通项公式. (1)Sn=(-1)n+1n, (2)Sn=2n2+n+3. [解析] (1)由Sn=(-1)n+1n. 当n=1时. a1=S1=1, 当n≥2时. an=Sn-Sn-1 =(-1)n+1n-(-1)n(n-1) =(-1)n(-2n+1) =(-1)n+1(2n-1). 又∵n=1时.a1=(-1)1+1=1. 即a1也满足an=(-1)n+1(2n-1). ∴an=(-1)n+1(2n-1). (2)由Sn=2n2+n+3. 当n=1时.a1=S1=6, 当n≥2时. an=Sn -Sn-1 =(2n2+n+3)-[2(n-1)2+(n-1)+3] =4n-1. ∴an=
网址:http://m.1010jiajiao.com/timu_id_4441817[举报]