摘要:解:(1)过C:上一点作斜率为的直线交C于另一点. 则. ----------------------------3分 于是有: 即: ----------------------------4分 (2)记.则 . ----------------6分 因为. 因此数列{}是等比数列. ----------------------------8分 可知:. . ----------------------------9分 当n为偶数时有: =. -----------------11分 于是 ①在n为偶数时有: . -----------------12分 ②在n为奇数时.前n-1项为偶数项.于是有: . -----------------13分 综合①②可知原不等式得证. ----------------------------14分
网址:http://m.1010jiajiao.com/timu_id_4398058[举报]
已知曲线
上动点
到定点
与定直线
的距离之比为常数
.
(1)求曲线
的轨迹方程;
(2)若过点
引曲线C的弦AB恰好被点
平分,求弦AB所在的直线方程;
(3)以曲线
的左顶点
为圆心作圆
:
,设圆
与曲线
交于点
与点
,求
的最小值,并求此时圆
的方程.
【解析】第一问利用(1)过点
作直线
的垂线,垂足为D.
代入坐标得到
第二问当斜率k不存在时,检验得不符合要求;
当直线l的斜率为k时,
;,化简得
![]()
第三问点N与点M关于X轴对称,设
,, 不妨设
.
由于点M在椭圆C上,所以
.
由已知
,则
,
由于
,故当
时,
取得最小值为
.
计算得,
,故
,又点
在圆
上,代入圆的方程得到
.
故圆T的方程为:![]()
查看习题详情和答案>>
已知
、
,椭圆C的方程为
,
、
分别为椭圆C的两个焦点,设
为椭圆C上一点,存在以
为圆心的
与
外切、与
内切
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点
作斜率为
的直线与椭圆C相交于A、B两点,与
轴相交于点D,若
求
的值;
(Ⅲ)已知真命题:“如果点T(
)在椭圆
上,那么过点T
的椭圆的切线方程为
=1.”利用上述结论,解答下面问题:
已知点Q是直线
上的动点,过点Q作椭圆C的两条切线QM、QN,
M、N为切点,问直线MN是否过定点?若是,请求出定点坐标;若不是,请说明理由。
查看习题详情和答案>>
(理)设斜率为k1的直线L交椭圆C:
+y2=1于A、B两点,点M为弦AB的中点,直线OM的斜率为k2(其中O为坐标原点,假设k1、k2都存在).
(1)求k1?k2的值.
(2)把上述椭圆C一般化为
+
=1
(a>b>0),其它条件不变,试猜想k1与k2关系(不需要证明).请你给出在双曲线
-
=1(a>0,b>0)中相类似的结论,并证明你的结论.
(3)分析(2)中的探究结果,并作出进一步概括,使上述结果都是你所概括命题的特例.
如果概括后的命题中的直线L过原点,P为概括后命题中曲线上一动点,借助直线L及动点P,请你提出一个有意义的数学问题,并予以解决.
查看习题详情和答案>>
| x2 |
| 2 |
(1)求k1?k2的值.
(2)把上述椭圆C一般化为
| x2 |
| a2 |
| y2 |
| b2 |
(a>b>0),其它条件不变,试猜想k1与k2关系(不需要证明).请你给出在双曲线
| x2 |
| a2 |
| y2 |
| b2 |
(3)分析(2)中的探究结果,并作出进一步概括,使上述结果都是你所概括命题的特例.
如果概括后的命题中的直线L过原点,P为概括后命题中曲线上一动点,借助直线L及动点P,请你提出一个有意义的数学问题,并予以解决.
(本小题满分13分)已知
、
,椭圆C的方程为
,
、
分别为椭圆C的两个焦点,设
为椭圆C上一点,存在以
为圆心的
与
外切、与
内切
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点
作斜率为
的直线与椭圆C相交于A、B两点,与
轴相交于点D,若
求
的值;
(Ⅲ)已知真命题:“如果点T(
)在椭圆
上,那么过点T
的椭圆的切线方程为
=1.”利用上述结论,解答下面问题:
已知点Q是直线
上的动点,过点Q作椭圆C的两条切线QM、QN,
M、N为切点,问直线MN是否过定点?若是,请求出定点坐标;若不是,请说明理由。
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点
(Ⅲ)已知真命题:“如果点T(
的椭圆的切线方程为
已知点Q是直线
M、N为切点,问直线MN是否过定点?若是,请求出定点坐标;若不是,请说明理由。
(2007•杨浦区二模)(理)设斜率为k1的直线L交椭圆C:
+y2=1于A、B两点,点M为弦AB的中点,直线OM的斜率为k2(其中O为坐标原点,假设k1、k2都存在).
(1)求k1?k2的值.
(2)把上述椭圆C一般化为
+
=1
(a>b>0),其它条件不变,试猜想k1与k2关系(不需要证明).请你给出在双曲线
-
=1(a>0,b>0)中相类似的结论,并证明你的结论.
(3)分析(2)中的探究结果,并作出进一步概括,使上述结果都是你所概括命题的特例.
如果概括后的命题中的直线L过原点,P为概括后命题中曲线上一动点,借助直线L及动点P,请你提出一个有意义的数学问题,并予以解决.
查看习题详情和答案>>
| x2 |
| 2 |
(1)求k1?k2的值.
(2)把上述椭圆C一般化为
| x2 |
| a2 |
| y2 |
| b2 |
(a>b>0),其它条件不变,试猜想k1与k2关系(不需要证明).请你给出在双曲线
| x2 |
| a2 |
| y2 |
| b2 |
(3)分析(2)中的探究结果,并作出进一步概括,使上述结果都是你所概括命题的特例.
如果概括后的命题中的直线L过原点,P为概括后命题中曲线上一动点,借助直线L及动点P,请你提出一个有意义的数学问题,并予以解决.