摘要:问题1.(上海)若.则函数的图象不经过 第一象限 第二象限 第三象限 第四象限 (安徽文)设.且...则的大小关系为 若函数(.)的定义域和值域都是.则 若.则..从小到大依次为 问题2.求下列函数的值域 : ,(≥) 问题3. (江苏)不等式的解集为 若不等式≤在内恒成立.则的取值范围是 ≤ ≤ 问题4.已知函数(且) 求的定义域.值域,求证该函数的图象关于直线对称, 解不等式 问题5. 设且.定义在区间内的函数是奇函数. 求的取值范围,讨论函数的单调性.
网址:http://m.1010jiajiao.com/timu_id_4389472[举报]
(2005
上海,21)对定义域分别是(1)
若函数(2)
求问题(1)中函数h(x)的值域;(3)
若g(x)=f(x+α),其中α是常数,且α(2007•上海)求出一个数学问题的正确结论后,将其作为条件之一,提出与原来问题有关的新问题,我们把它称为原来问题的一个“逆向”问题.
例如,原来问题是“若正四棱锥底面边长为4,侧棱长为3,求该正四棱锥的体积”.求出体积
后,它的一个“逆向”问题可以是“若正四棱锥底面边长为4,体积为
,求侧棱长”;也可以是“若正四棱锥的体积为
,求所有侧面面积之和的最小值”.
试给出问题“在平面直角坐标系xoy中,求点P(2,1)到直线3x+4y=0的距离.”的一个有意义的“逆向”问题,并解答你所给出的“逆向”问题.
查看习题详情和答案>>
例如,原来问题是“若正四棱锥底面边长为4,侧棱长为3,求该正四棱锥的体积”.求出体积
| 16 |
| 3 |
| 16 |
| 3 |
| 16 |
| 3 |
试给出问题“在平面直角坐标系xoy中,求点P(2,1)到直线3x+4y=0的距离.”的一个有意义的“逆向”问题,并解答你所给出的“逆向”问题.
(2007•上海)我们在下面的表格内填写数值:先将第1行的所有空格填上1;再把一个首项为1,公比为q的数列{an}依次填入第一列的空格内;然后按照“任意一格的数是它上面一格的数与它左边一格的数之和”的规则填写其它空格.
(1)设第2行的数依次为B1,B2,…,Bn,试用n,q表示B1+B2+…+Bn的值;
(2)设第3列的数依次为c1,c2,c3,…,cn,求证:对于任意非零实数q,c1+c3>2c2;
(3)请在以下两个问题中选择一个进行研究 (只能选择一个问题,如果都选,被认为选择了第一问).
①能否找到q的值,使得(2)中的数列c1,c2,c3,…,cn的前m项c1,c2,…,cm (m≥3)成为等比数列?若能找到,m的值有多少个?若不能找到,说明理由.
②能否找到q的值,使得填完表格后,除第1列外,还有不同的两列数的前三项各自依次成等比数列?并说明理由.
查看习题详情和答案>>
| 第1列 | 第2列 | 第3列 | … | 第n列 | |
| 第1行 | 1 | 1 | 1 | … | 1 |
| 第2行 | q | ||||
| 第3行 | q2 | ||||
| … | … | ||||
| 第n行 | qn-1 |
(2)设第3列的数依次为c1,c2,c3,…,cn,求证:对于任意非零实数q,c1+c3>2c2;
(3)请在以下两个问题中选择一个进行研究 (只能选择一个问题,如果都选,被认为选择了第一问).
①能否找到q的值,使得(2)中的数列c1,c2,c3,…,cn的前m项c1,c2,…,cm (m≥3)成为等比数列?若能找到,m的值有多少个?若不能找到,说明理由.
②能否找到q的值,使得填完表格后,除第1列外,还有不同的两列数的前三项各自依次成等比数列?并说明理由.