摘要:点到平面的距离 (为平面的法向量.是经过面的一条斜线.).
网址:http://m.1010jiajiao.com/timu_id_4362203[举报]
用向量方法可以证明:若P为正三角形内切圆上任意一点,则点P到三角形三个顶点距离的平方和为定值.请你针对这个问题进行研究,写出一个推广后的正确命题:
①若P为正三角形外接圆上任意一点,则点P到三角形三个顶点距离的平方和为定值.
②若正三角形A1A2A3外接圆的圆心为O,半径为R,P为平面上任意一点,则|PA1|2+|PA2|2+|PA3|2=3|PO|2+3R2.
③若P为正多边形内切圆上任意一点,则点P到各个顶点距离的平方和为定值.
④若P为正多边形外接圆上任意一点,则点P到各个顶点距离的平方和为定值.
查看习题详情和答案>>
①②③④
①②③④
.①若P为正三角形外接圆上任意一点,则点P到三角形三个顶点距离的平方和为定值.
②若正三角形A1A2A3外接圆的圆心为O,半径为R,P为平面上任意一点,则|PA1|2+|PA2|2+|PA3|2=3|PO|2+3R2.
③若P为正多边形内切圆上任意一点,则点P到各个顶点距离的平方和为定值.
④若P为正多边形外接圆上任意一点,则点P到各个顶点距离的平方和为定值.