题目内容
用向量方法可以证明:若P为正三角形内切圆上任意一点,则点P到三角形三个顶点距离的平方和为定值.请你针对这个问题进行研究,写出一个推广后的正确命题:
①若P为正三角形外接圆上任意一点,则点P到三角形三个顶点距离的平方和为定值.
②若正三角形A1A2A3外接圆的圆心为O,半径为R,P为平面上任意一点,则|PA1|2+|PA2|2+|PA3|2=3|PO|2+3R2.
③若P为正多边形内切圆上任意一点,则点P到各个顶点距离的平方和为定值.
④若P为正多边形外接圆上任意一点,则点P到各个顶点距离的平方和为定值.
①②③④
①②③④
.①若P为正三角形外接圆上任意一点,则点P到三角形三个顶点距离的平方和为定值.
②若正三角形A1A2A3外接圆的圆心为O,半径为R,P为平面上任意一点,则|PA1|2+|PA2|2+|PA3|2=3|PO|2+3R2.
③若P为正多边形内切圆上任意一点,则点P到各个顶点距离的平方和为定值.
④若P为正多边形外接圆上任意一点,则点P到各个顶点距离的平方和为定值.
分析:先理解用向量法证明命题的证明过程,然后根据类比推理,可以得到推广后的命题.
解答:解:根据 正三角形的性质可知,在正三角形内的任何一点P,则点P到三角形三个顶点距离的平方和为定值.
所以根据类比推理可知:
①若P为正三角形外接圆上任意一点,则点P到三角形三个顶点距离的平方和为定值,正确.
②若正三角形A1A2A3外接圆的圆心为O,半径为R,P为平面上任意一点,则|PA1|2+|PA2|2+|PA3|2=3|PO|2+3R2,正确.
③若P为正多边形内切圆上任意一点,则点P到各个顶点距离的平方和为定值,正确.
④若P为正多边形外接圆上任意一点,则点P到各个顶点距离的平方和为定值.正确.
故答案为:①②③④.
所以根据类比推理可知:
①若P为正三角形外接圆上任意一点,则点P到三角形三个顶点距离的平方和为定值,正确.
②若正三角形A1A2A3外接圆的圆心为O,半径为R,P为平面上任意一点,则|PA1|2+|PA2|2+|PA3|2=3|PO|2+3R2,正确.
③若P为正多边形内切圆上任意一点,则点P到各个顶点距离的平方和为定值,正确.
④若P为正多边形外接圆上任意一点,则点P到各个顶点距离的平方和为定值.正确.
故答案为:①②③④.
点评:本题主要考查类比推理的应用,考查学生分析问题的能力,综合性较强,难度较大.
练习册系列答案
相关题目