摘要:(1)知识与技能目标: 了解等可能性事件的概率的意义.初步运用排列.组合的公式和枚举法计算一些等可能性事件的概率. (2)过程和方法目标: 通过学习.生活中的实际问题的引入.让数学走进生活.将学生由对具体事例的感性认识上升到对定义的理性认识.可培养学生的梳理归纳能力,通过归纳定义后再加以应用可培养学生的信息迁移和类比推理能力,通过计算等可能性事件的概率.提高综合运用排列.组合知识的能力和分析问题.解决问题的能力. (3)情感与态度目标: 营造亲切.和谐的氛围.以“趣 激学,随机事件的发生既有随机性.又有规律性.使学生了解偶然性寓于必然性之中的辩证思想,引导学生树立科学的人生观和价值观.培养学生的综合素质.
网址:http://m.1010jiajiao.com/timu_id_4361002[举报]
为普及高中生安全逃生知识与安全防护能力,某学校高一年级举办了高中生安全知识与安全逃生能力竞赛.该竞赛分为预赛和决赛两个阶段,预赛为笔试,决赛为技能比赛.先将所有参赛选手参加笔试的成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.
(Ⅰ)求出上表中的x,y,z,s,p的值;
(Ⅱ)按规定,预赛成绩不低于90分的选手参加决赛,参加决赛的选手按照抽签方式决定出场顺序.已知高一•二班有甲、乙两名同学取得决赛资格.
①求决赛出场的顺序中,甲不在第一位、乙不在最后一位的概率;
②记高一•二班在决赛中进入前三名的人数为X,求X的分布列和数学期望.
查看习题详情和答案>>
| 分数(分数段) | 频数(人数) | 频率 |
| [60,70) | 9 | x |
| [70,80) | y | 0.38 |
| [80,90) | 16 | 0.32 |
| [90,100) | z | s |
| 合 计 | p | 1 |
(Ⅱ)按规定,预赛成绩不低于90分的选手参加决赛,参加决赛的选手按照抽签方式决定出场顺序.已知高一•二班有甲、乙两名同学取得决赛资格.
①求决赛出场的顺序中,甲不在第一位、乙不在最后一位的概率;
②记高一•二班在决赛中进入前三名的人数为X,求X的分布列和数学期望.
为普及高中生安全逃生知识与安全防护能力,某学校高一年级举办了高中生安全知识与安全逃生能力竞赛.该竞赛分为预赛和决赛两个阶段,预赛为笔试,决赛为技能比赛.先将所有参赛选手参加笔试的成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.
(Ⅰ)求出上表中的x,y,z,s,p的值;
(Ⅱ)按规定,预赛成绩不低于90分的选手参加决赛,参加决赛的选手按照抽签方式决定出场顺序.已知高一•二班有甲、乙两名同学取得决赛资格.
①求决赛出场的顺序中,甲不在第一位、乙不在最后一位的概率;
②记高一•二班在决赛中进入前三名的人数为X,求X的分布列和数学期望.
查看习题详情和答案>>
| 分数(分数段) | 频数(人数) | 频率 |
| [60,70) | 9 | x |
| [70,80) | y | 0.38 |
| [80,90) | 16 | 0.32 |
| [90,100) | z | s |
| 合 计 | p | 1 |
(Ⅱ)按规定,预赛成绩不低于90分的选手参加决赛,参加决赛的选手按照抽签方式决定出场顺序.已知高一•二班有甲、乙两名同学取得决赛资格.
①求决赛出场的顺序中,甲不在第一位、乙不在最后一位的概率;
②记高一•二班在决赛中进入前三名的人数为X,求X的分布列和数学期望.
给出如下四对事件:①某人射击1次,“射中7环”与“射中8环”;②甲、乙两人各射击1次,“甲射中7环”与“乙射中8环”;③甲、乙两人各射击1次,“两人均射中目标”与“两人均没有射中目标”;④甲、乙两人各射击1次,“至少有1人射中目标”与“甲射中,但乙未射中目标”,其中属于互斥事件的有( )
查看习题详情和答案>>