摘要:以椭圆 的焦点为焦点.过直线 上一点 作椭圆.要使所作椭圆的长轴最短.点 应在何处?并求出此时的椭圆方程.
网址:http://m.1010jiajiao.com/timu_id_4355975[举报]
已知椭圆的焦点为F1(-1,0)、F2(1,0),直线x=4是它的一条准线.
(1)求椭圆的方程;
(2)设A1、A2分别是椭圆的左顶点和右顶点,P是椭圆上满足|PA1|-|PA2|=2的一点,求tan∠A1PA2的值;
(3)若过点(1,0)的直线与以原点为顶点、A2为焦点的抛物线相交于点M、N,求MN中点Q的轨迹方程.
查看习题详情和答案>>
椭圆
的一个焦点是F(1,0),已知椭圆短轴的两个三等分点与一个焦点构成正三角形.
(1)求椭圆的标准方程;
(2)已知Q(x,y)为椭圆上任意一点,求以Q为切点,椭圆的切线方程.
(3)设点P为直线x=4上一动点,过P作椭圆两条切线PA,PB,求证直线AB过定点,并求出该定点的坐标.
查看习题详情和答案>>
(1)求椭圆的标准方程;
(2)已知Q(x,y)为椭圆上任意一点,求以Q为切点,椭圆的切线方程.
(3)设点P为直线x=4上一动点,过P作椭圆两条切线PA,PB,求证直线AB过定点,并求出该定点的坐标.
查看习题详情和答案>>
已知椭圆的焦点在x轴上,中心在坐标原点,以右焦点