摘要: 探索型问题
网址:http://m.1010jiajiao.com/timu_id_4056145[举报]
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+
| a |
| x |
探索研究
(1)我们可以借鉴学习函数的经验,先探索函数y=x+
| 1 |
| x |
1填写下表,画出函数的图象:
| x | … |
|
|
|
1 | 2 | 3 | 4 | … | ||||||
| y | … | … |
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,除了通过观察图象,还可以通过配方得到.同样通过配方也可以求函数y=x+
| 1 |
| x |
| 1 |
| x |
| x |
|
| x |
|
| x |
|
| x |
|
=(
| x |
|
当
| x |
|
| 1 |
| x |
解决问题
(2)解决“问题情境”中的问题,直接写出答案.
通过对一次函数、反比例函数的学习.我们积累了一定的经验.下面我们借鉴以往研究函效的经验,探索的数y=x+
| 1 |
| x |
(1)填写下表,画出函数的图象:
| x | … |
|
|
|
1 | 2 | 3 | 4 | … | ||||||
| y | … | … |
①
函数两条不同类型的性质是:当0<x<1时,y 随x的增大而减小,当x>1时,y 随x的增大而增大;
函数两条不同类型的性质是:当0<x<1时,y 随x的增大而减小,当x>1时,y 随x的增大而增大;
;②
当x=1时,函数y=x+
(x>0)的最小值是2.
| 1 |
| x |
当x=1时,函数y=x+
(x>0)的最小值是2.
.| 1 |
| x |
知识运用:
一般函数y=x+
| a |
| x |
己知一个矩形的面积是4.设矩形的一边长为x.它的周长为y.求y与x的函数关系式,井求出:当x取何值时.矩形的周长最小?最小值是多少?
问题情境
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型
设该矩形的长为x,周长为y,则y与x的函数关系式为
.
探索研究
(1)我们可以借鉴学习函数的经验,先探索函数
的图象性质.
1填写下表,画出函数的图象:
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,除了通过观察图象,还可以通过配方得到.同样通过配方也可以求函数
(x>0)的最小值.
=
=
=
≥2
当
=0,即x=1时,函数
(x>0)的最小值为2.
解决问题
(2)解决“问题情境”中的问题,直接写出答案.
查看习题详情和答案>>
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型
设该矩形的长为x,周长为y,则y与x的函数关系式为
探索研究
(1)我们可以借鉴学习函数的经验,先探索函数
1填写下表,画出函数的图象:
| x | … | 1 | 2 | 3 | 4 | … | |||
| y | … | … |
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,除了通过观察图象,还可以通过配方得到.同样通过配方也可以求函数
=
当
解决问题
(2)解决“问题情境”中的问题,直接写出答案.
问题情境
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型
设该矩形的长为x,周长为y,则y与x的函数关系式为
.
探索研究
(1)我们可以借鉴学习函数的经验,先探索函数
的图象性质.
1填写下表,画出函数的图象:
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,除了通过观察图象,还可以通过配方得到.同样通过配方也可以求函数
(x>0)的最小值.
=
=
=
≥2
当
=0,即x=1时,函数
(x>0)的最小值为2.
解决问题
(2)解决“问题情境”中的问题,直接写出答案.
查看习题详情和答案>>
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型
设该矩形的长为x,周长为y,则y与x的函数关系式为
探索研究
(1)我们可以借鉴学习函数的经验,先探索函数
1填写下表,画出函数的图象:
| x | … | 1 | 2 | 3 | 4 | … | |||
| y | … | … |
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,除了通过观察图象,还可以通过配方得到.同样通过配方也可以求函数
=
当
解决问题
(2)解决“问题情境”中的问题,直接写出答案.
探索研究:
通过对一次函数、反比例函数的学习.我们积累了一定的经验.下面我们借鉴以往研究函效的经验,探索的数y=x+
(x>0)的图象和性质.
(1)填写下表,画出函数的图象:
| x | … | 1 | 2 | 3 | 4 | … | |||
| y | … | … |
①________;
②________.
知识运用:
一般函数y=x+
己知一个矩形的面积是4.设矩形的一边长为x.它的周长为y.求y与x的函数关系式,井求出:当x取何值时.矩形的周长最小?最小值是多少? 查看习题详情和答案>>