摘要:(理)过椭圆的左顶点A的斜率为k的直线交椭圆C于另一个点B.且点B在x轴上的射影恰好为右焦点F.若则椭圆离心率的取值范围是 A. B. C. D. (文)已知是以为焦点的椭圆上的一点.若..则此椭圆的的离心率为 A. B. C. D.
网址:http://m.1010jiajiao.com/timu_id_4038443[举报]
| x2 |
| a2 |
| y2 |
| b2 |
| F1F2 |
| F2Q |
| 0 |
(1)求椭圆C的方程;
(2)过右焦点F2作斜率为k的直线l与椭圆C交于M、N两点,在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围,如果不存在,说明理由.
设椭圆C:
(a>b>0)的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且
。
(1)求椭圆C的离心率;
(2)若过A,Q,F2三点的圆恰好与直线l:
相切,求椭圆C的方程;
(3)在(2)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M,N两点,在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围;如果不存在,说明理由。
查看习题详情和答案>>
(2)若过A,Q,F2三点的圆恰好与直线l:
(3)在(2)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M,N两点,在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围;如果不存在,说明理由。
设椭圆C:
的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且
.
(1)求椭圆C的离心率;
(2)若过A、Q、F2三点的圆恰好与直线l:
相切,求椭圆C的方程;
(3)在(2)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M、N两点,在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围,如果不存在,说明理由.
.
查看习题详情和答案>>
(1)求椭圆C的离心率;
(2)若过A、Q、F2三点的圆恰好与直线l:
(3)在(2)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M、N两点,在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围,如果不存在,说明理由.
.