摘要:函数零点的概念: 对于函数.把使成立的实数叫做函数的零点. 函数零点的意义: 函数的零点就是方程实数根.亦即函数的图象与轴交点的横坐标. 即: 方程有实数根函数的图象与轴有交点函数有零点. 函数零点的求法: 求函数的零点: ①求方程的实数根, ②对于不能用求根公式的方程.可以将它与函数的图象联系起来.并利用函数的性质找出零点.1.师:引导学生仔细体会左边的这段文字.感悟其中的思想方法. 生:认真理解函数零点的意义.并根据函数零点的意义探索其求法: ①代数法, ②几何法.
网址:http://m.1010jiajiao.com/timu_id_4031719[举报]
(本题满分12分)
已知二次函数![]()
(1)若
,试判断函数
零点个数
(2) 若对
且
,
,证明方程
必有一个实数根属于![]()
(3)是否存在
,使
同时满足以下条件①当
时, 函数
有最小值0;;②对
,都有
。若存在,求出
的值,若不存在,请说明理由。
查看习题详情和答案>>
已知
,设![]()
和
是方程
的两个根,不等式
对任意实数
恒成立;
函数
有两个不同的零点.求使“P且Q”为真命题的实数
的取值范围.
【解析】本试题主要考查了命题和函数零点的运用。由题设x1+x2=a,x1x2=-2,
∴|x1-x2|=
=
.
当a∈[1,2]时,
的最小值为3. 当a∈[1,2]时,
的最小值为3.
要使|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立,只须|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+
=0的判别式
Δ=4m2-12(m+
)=4m2-12m-16>0,
得m<-1或m>4.
可得到要使“P∧Q”为真命题,只需P真Q真即可。
解:由题设x1+x2=a,x1x2=-2,
∴|x1-x2|=
=
.
当a∈[1,2]时,
的最小值为3.
要使|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立,只须|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+
=0的判别式
Δ=4m2-12(m+
)=4m2-12m-16>0,
得m<-1或m>4.
综上,要使“P∧Q”为真命题,只需P真Q真,即![]()
解得实数m的取值范围是(4,8]
查看习题详情和答案>>