摘要:2.先来观察几个具体的一元二次方程的根及其相应的二次函数的图象: ①方程与函数 ②方程与函数 ③方程与函数
网址:http://m.1010jiajiao.com/timu_id_4031717[举报]
某股份公司公开发行4170万股股票,现共有1652158人申购,每人申购1000股,现由计算机按申购先后次序给每个申购者一个编号,并在公证处监督下摇号决定中签号码.若申购者的编号的未位数(或末几位数)与中签号相同者可以购买股票,问应摇出几个不同的一位数,几个不同的二位数,……,几个不同的七位数?
(1)由图中数据,求a的值;
(2)若要从指标参数在[85,90)、[90,95)、[95,100]的三组校车中,用分层抽样方法抽取8辆,作另一项指标脚定,求各组分别抽取的车辆数;
(3)某学校根据自己的实际情况,从(2)中抽取的8辆校车中再随机选4辆来考察校车的价格,设指标参数在[90,95)内的校车被选取的辆数为ξ,求ξ的分布列以及ξ的数学期望.
下表给出的是某港口在某季节每天几个时刻的水深.
(1)若该港口的水深y(m)和时刻t(0≤t≤24)的关系可用函数y=Asin(ωt)+b(其中A>0,ω>0,b∈R)来近似描述,求A,ω,b的值;
(2)若一条货船的吃水深度(船底与水面的距离)为4m,安全条例规定至少要有2.5m的安全间隙(船底与海底的距离),试用(1)中的函数关系判断该船何时能进入港口?
查看习题详情和答案>>
| 时刻 | 0:00 | 3:00 | 6:00 | 9:00 | 12:00 | 15:00 | 18:00 | 21:00 | 24:00 |
| 水深/m | 5.0 | 8.0 | 5.0 | 2.0 | 5.0 | 8.0 | 5.0 | 2.0 | 5.0 |
(2)若一条货船的吃水深度(船底与水面的距离)为4m,安全条例规定至少要有2.5m的安全间隙(船底与海底的距离),试用(1)中的函数关系判断该船何时能进入港口?
俗话说“一石激起千层浪”,小时候在水上打“水漂”的游戏一定不会忘记吧.现在一个圆形波浪实验水池的中心已有两个振动源,在t秒内,它们引发的水面波动可分别由函数y1=sin t和y2=sin(t+
)来描述,当这两个振动源同时开始工作时,要使原本平静的水面保持平静,则需再增加一个振动源(假设不计其他因素,则水面波动由几个函数的和表达),请你写出这个新增振动源的函数解析式
.
查看习题详情和答案>>
| 2π | 3 |
(1)由图中数据,求a的值;
(2)若要从指标参数在[85,90)、[90,95)、[95,100]的三组校车中,用分层抽样方法抽取8辆,作另一项指标脚定,求各组分别抽取的车辆数;
(3)某学校根据自己的实际情况,从(2)中抽取的8辆校车中再随机选4辆来考察校车的价格,设指标参数在[90,95)内的校车被选取的辆数为ξ,求ξ的分布列以及ξ的数学期望.
查看习题详情和答案>>