摘要:2.线面垂直 定义:如果一条直线l和一个平面α相交.并且和平面α内的任意一条直线都垂直.我们就说直线l和平面α互相垂直其中直线l叫做平面的垂线.平面α叫做直线l的垂面,直线与平面的交点叫做垂足.直线l与平面α垂直记作:l⊥α. 直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直.那么这条直线垂直于这个平面. 直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.
网址:http://m.1010jiajiao.com/timu_id_4030330[举报]
平面几何中,同垂直于一条直线的两直线________.那么,类比到空间中有:(1)同垂直于一条直线的两条直线平行,这个命题成立吗?______.为什么?_______.(2)同垂直于一个平面的两条直线_________.这个命题是__________(填:真、假)命题.原因是:已知a⊥平面α,b⊥平面α,求证:a∥b.假设b不平行于a,设b∩α=O,b′是经过点O与直线_______平行的直线.∵a_______b′,a⊥α ,?∴b′________α,?即经过同一点O的两条直线________、_______都垂直于平面α,这是不可能的.因此,________.这种证明的方法是________法.?
命题(2)的逆命题是:如果两条平行直线中的一条垂直于一个平面,那么另一条也_________这个平面.用数学符号表示:已知a_____b,a_______平面α,求证:b______α.?
证明:设m是α内的任意一条直线.∵a________α,m
α,?
?∴a________m.又∵a_______b,∴________bm.又∵m
α,m是_______,∴由线面垂直的__________可知b______α.
(1)写出三棱锥P-ABC中的所有的线面垂直关系(不要求证明);
(2)在三棱锥P-ABC中,求证:平面ABC⊥平面PAB.
| 3 |
(1)请观察图形直接写出两对不同的线面垂直关系,并任选其中一对加以证明;
(2)试求直线BD与平面BEF所成的角的大小.
如图所示,圆柱的高为2,底面半径为
,AE、DF是圆柱的两条母线,过
作圆柱的截面交下底面于
.![]()
(1)求证:
;
(2)若四边形ABCD是正方形,求证
;
(3)在(2)的条件下,求二面角A-BC-E的平面角的一个三角函数值。
![]()
【解析】第一问中,利用由圆柱的性质知:AD平行平面BCFE
又过
作圆柱的截面交下底面于
.
∥
又AE、DF是圆柱的两条母线
∥DF,且AE=DF
AD∥EF
第二问中,由线面垂直得到线线垂直。四边形ABCD是正方形![]()
又![]()
BC、AE是平面ABE内两条相交直线
![]()
![]()
第三问中,设正方形ABCD的边长为x,则在![]()
在![]()
由(2)可知:
为二面角A-BC-E的平面角,所以![]()
证明:(1)由圆柱的性质知:AD平行平面BCFE
又过
作圆柱的截面交下底面于
.
∥
又AE、DF是圆柱的两条母线
∥DF,且AE=DF
AD∥EF![]()
(2)
四边形ABCD是正方形![]()
又![]()
BC、AE是平面ABE内两条相交直线
![]()
![]()
(3)设正方形ABCD的边长为x,则在![]()
在![]()
由(2)可知:
为二面角A-BC-E的平面角,所以![]()
查看习题详情和答案>>