摘要:函数图象的几何特征与函数性质的数量特征紧密结合.有效地揭示了各类函数和定义域.值域.单调性.奇偶性.周期性等基本属性.体现了数形结合的特征与方法.为此.既要从定形.定性.定理.定位各方面精确地观察图形.绘制图形.又要熟练地掌握函数图象的平移变换.对称变换. 常见的函数数字特征有: (1)函数奇偶性: 奇函数, 偶函数. (2)函数单调性: 单调递增或, 单调递增或. (3)函数周期性 周期为:或, (4)对称性 关于y轴对称:, 关于原点对称:, 关于直线对称:或, 关于点对称:或.
网址:http://m.1010jiajiao.com/timu_id_4030271[举报]
(1)将“特征数”是{0,
| ||
| 3 |
y=
x-1
| ||
| 3 |
y=
x-1
; (答案写在答卷上)
| ||
| 3 |
(2)在(1)中,平移前后的两个函数分别与y轴交于A、B两点,与直线x=
| 3 |
(3)若(2)中的四边形与“特征数”是{1,-2b,b2+
| 1 |
| 2 |
定义{a,b,c}为函数y=ax2+bx+c的“特征数”.如:函数y=x2-2x+3的“特征数”是{1,-2,3},函数y=2x+3的“特征数”是{0,2,3,},函数y=-x的“特征数”是{0,-1,0}
(1)将“特征数”是{
}的函数图象向下平移2个单位,得到的新函数的解析式是________; (答案写在答卷上)
(2)在(1)中,平移前后的两个函数分别与y轴交于A、B两点,与直线x=
分别交于D、C两点,在平面直角坐标系中画出图形,判断以点A、B、C、D为顶点的四边形形状,并说明理由;
(3)若(2)中的四边形与“特征数”是{
}的函数图象的有交点,求满足条件的实数b的取值范围.
查看习题详情和答案>>
(Ⅰ)写出服药后y与t之间的函数关系式y=f(t);
(Ⅱ)据进一步测定:每毫升血液中含药量不少于
| 4 | 9 |
(2012•黄浦区二模)对n∈N*,定义函数fn(x)=-(x-n)2+n,n-1≤x≤n.
(1)求证:y=fn(x)图象的右端点与y=fn+1(x)图象的左端点重合;并回答这些端点在哪条直线上.
(2)若直线y=knx与函数fn(x)=-(x-n)2+n,n-1≤x≤n(n≥2,n∈N*)的图象有且仅有一个公共点,试将kn表示成n的函数.
(3)对n∈N*,n≥2,在区间[0,n]上定义函数y=f(x),使得当m-1≤x≤m(n∈N*,且m=1,2,…,n)时,f(x)=fm(x).试研究关于x的方程f(x)=fn(x)(0≤x≤n,n∈N*)的实数解的个数(这里的kn是(2)中的kn),并证明你的结论.
查看习题详情和答案>>
(1)求证:y=fn(x)图象的右端点与y=fn+1(x)图象的左端点重合;并回答这些端点在哪条直线上.
(2)若直线y=knx与函数fn(x)=-(x-n)2+n,n-1≤x≤n(n≥2,n∈N*)的图象有且仅有一个公共点,试将kn表示成n的函数.
(3)对n∈N*,n≥2,在区间[0,n]上定义函数y=f(x),使得当m-1≤x≤m(n∈N*,且m=1,2,…,n)时,f(x)=fm(x).试研究关于x的方程f(x)=fn(x)(0≤x≤n,n∈N*)的实数解的个数(这里的kn是(2)中的kn),并证明你的结论.