摘要:了解可导函数的单调性与其导数的关系.会用导数分析函数的单调性.进而求解函数不等式的问题,
网址:http://m.1010jiajiao.com/timu_id_4009414[举报]
(本小题满分12分)
已知函数
;
(1)求
; (2)求
的最大值与最小值.
【解析】第一问利用导数的运算法则,幂函数的导数公式,可得。
第二问中,利用第一问的导数,令导数为零,得到![]()
然后结合导数,函数的关系判定函数的单调性,求解最值即可。
查看习题详情和答案>>
已知函数y=x+
(x>0)有如下性质:如果常数a>0,那么该函数在(0,
]上是减函数,在[
,+∞)上是增函数.
(1)如果函数y=x+
(x>0)的值域为[6,+∞),求b的值;
(2)研究函数y=x2+
(x>0,常数c>0)在定义域内的单调性,并用定义证明(若有多个单调区间,请选择一个证明);
(3)对函数y=x+
和y=x2+
(x>0,常数a>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数F(x)=(x2+
)2+(
+x)2在区间[
,2]上的最大值和最小值(可利用你的研究结论).
查看习题详情和答案>>
| a |
| x |
| a |
| a |
(1)如果函数y=x+
| b2 |
| x |
(2)研究函数y=x2+
| c |
| x2 |
(3)对函数y=x+
| a |
| x |
| a |
| x2 |
| 1 |
| x |
| 1 |
| x2 |
| 1 |
| 2 |
已知函数y=x+
有如下性质:如果常数a>0,那么该函数在(0,
]上是减函数,在[
,+∞)上是增函数.
(Ⅰ)如果函数y=x+
(x>0)的值域为[6,+∞),求b的值;
(Ⅱ)研究函数y=x2+
(常数c>0)在定义域内的单调性,并说明理由;
(Ⅲ)对函数y=x+
和y=x2+
(常数a>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数F(x)=(x2+
)n+(
+x)n(n是正整数)在区间[
,2]上的最大值和最小值(可利用你的研究结论).
查看习题详情和答案>>
| a |
| x |
| a |
| a |
(Ⅰ)如果函数y=x+
| 2b |
| x |
(Ⅱ)研究函数y=x2+
| c |
| x2 |
(Ⅲ)对函数y=x+
| a |
| x |
| a |
| x2 |
| 1 |
| x |
| 1 |
| x2 |
| 1 |
| 2 |