ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯Êýy=x+
£¨x£¾0£©ÓÐÈçÏÂÐÔÖÊ£ºÈç¹û³£Êýa£¾0£¬ÄÇô¸Ãº¯ÊýÔÚ£¨0£¬
]ÉÏÊǼõº¯Êý£¬ÔÚ[
£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£®
£¨1£©Èç¹ûº¯Êýy=x+
£¨x£¾0£©µÄÖµÓòΪ[6£¬+¡Þ£©£¬ÇóbµÄÖµ£»
£¨2£©Ñо¿º¯Êýy=x2+
£¨x£¾0£¬³£Êýc£¾0£©ÔÚ¶¨ÒåÓòÄڵĵ¥µ÷ÐÔ£¬²¢Óö¨ÒåÖ¤Ã÷£¨ÈôÓжà¸öµ¥µ÷Çø¼ä£¬ÇëÑ¡ÔñÒ»¸öÖ¤Ã÷£©£»
£¨3£©¶Ôº¯Êýy=x+
ºÍy=x2+
£¨x£¾0£¬³£Êýa£¾0£©×÷³öÍÆ¹ã£¬Ê¹ËüÃǶ¼ÊÇÄãËùÍÆ¹ãµÄº¯ÊýµÄÌØÀý£®Ñо¿ÍƹãºóµÄº¯ÊýµÄµ¥µ÷ÐÔ£¨Ö»Ðëд³ö½áÂÛ£¬²»±ØÖ¤Ã÷£©£¬²¢Çóº¯ÊýF£¨x£©=(x2+
)2+(
+x)2ÔÚÇø¼ä[
£¬2]ÉϵÄ×î´óÖµºÍ×îСֵ£¨¿ÉÀûÓÃÄãµÄÑо¿½áÂÛ£©£®
| a |
| x |
| a |
| a |
£¨1£©Èç¹ûº¯Êýy=x+
| b2 |
| x |
£¨2£©Ñо¿º¯Êýy=x2+
| c |
| x2 |
£¨3£©¶Ôº¯Êýy=x+
| a |
| x |
| a |
| x2 |
| 1 |
| x |
| 1 |
| x2 |
| 1 |
| 2 |
·ÖÎö£º£¨1£©¸ù¾ÝÌâÒâ¿ÉÖª£ºº¯Êýy=x+
£¨x£¾0£©ÔÚ£¨0£¬
]ÉÏÊǼõº¯Êý£¬ÔÚ[
£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£®´Ó¶øµ±x=
ʱ£¬º¯ÊýÈ¡µ½×îСֵ6£¬¹Ê¿É½â£»
£¨2£©¸ù¾ÝÌâÒâ¿ÉÖª£ºº¯Êýy=x2+
£¨x£¾0£¬³£Êýc£¾0£©ÔÚ£¨0£¬
]ÉÏÊǼõº¯Êý£¬ÔÚ[
£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬ÔÙÓö¨Òå½øÐÐÖ¤Ã÷£»
£¨3£©¸ù¾ÝÌâÒ⣬½áºÏ»ù±¾²»µÈʽ¿É×÷ÍÆ¹ã£®ÀûÓÃÍÆ¹ã½áÂÛ£¬¿ÉÖªº¯ÊýÔÚ[
£¬1]ÉÏÊǼõº¯Êý£¬ÔÚ[1£¬2]ÉÏÊÇÔöº¯Êý£¬´Ó¶ø¿É½â£®
| b2 |
| x |
| b2 |
| b2 |
| b2 |
£¨2£©¸ù¾ÝÌâÒâ¿ÉÖª£ºº¯Êýy=x2+
| c |
| x2 |
| 4 | c |
| 4 | c |
£¨3£©¸ù¾ÝÌâÒ⣬½áºÏ»ù±¾²»µÈʽ¿É×÷ÍÆ¹ã£®ÀûÓÃÍÆ¹ã½áÂÛ£¬¿ÉÖªº¯ÊýÔÚ[
| 1 |
| 2 |
½â´ð£º½â£º£¨1£©º¯Êýy=x+
£¨x£¾0£©ÔÚ£¨0£¬
]ÉÏÊǼõº¯Êý£¬ÔÚ[
£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£®µ±x=
ʱ£¬ymin=
+
=2
=6£¬
ËùÒÔb=¡À3£®£¨Â©-3£¬¿Û1·Ö£©¡£¨4·Ö£©
£¨2£©º¯Êýy=x2+
£¨x£¾0£¬³£Êýc£¾0£©ÔÚ£¨0£¬
]ÉÏÊǼõº¯Êý£¬ÔÚ[
£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£®¡£¨2·Ö£©
Ö¤Ã÷£ºº¯Êýy=x2+
£¨x£¾0£¬³£Êýc£¾0£©ÔÚ£¨0£¬
]ÉÏÊǼõº¯Êý
ÔÚ£¨0£¬
]ÄÚÈÎÈ¡Á½¸ö±äÁ¿x1£¬x2£¬ÇÒx1£¼x2£¬
Ôòy1-y2=
+
-
-
=
¡ßx1£¬x2¡Ê£¨0£¬
]ÇÒx1£¼x2£¬
¡ày1£¾y2
¡àº¯Êýy=x2+
£¨x£¾0£¬³£Êýc£¾0£©ÔÚ£¨0£¬
]ÉÏÊǼõº¯Êý¡£¨4·Ö£©
£¨3£©×÷³öÍÆ¹ã£ºy=xn+
£¨x£¾0£¬n¡ÊN*£¬³£Êýa£¾0£©¡£¨1·Ö£©
ÔÚ£¨0£¬
]ÉÏÊǼõº¯Êý£¬ÔÚ[
£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£®¡£¨2·Ö£©
»ò×÷³öÍÆ¹ã£ºy=x2n+
£¨x£¾0£¬n¡ÊN£¬³£Êýa£¾0£©¡£¨1·Ö£©
ÔÚ£¨0£¬
]ÉÏÊǼõº¯Êý£¬ÔÚ[
£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£®¡£¨2·Ö£©
F£¨x£©=(x2+
)2+(
+x)2
=(x4+
)+(x2+
)+2(x+
)
[
£¬1]ÉÏÊǼõº¯Êý£¬ÔÚ[1£¬2]ÉÏÊÇÔöº¯Êý£®¡£¨2·Ö£©
µ±x=1ʱ£¬F£¨x£©min=8£»
µ±x=
»ò2ʱ£¬F(x)max=
£®¡£¨3·Ö£©
| b2 |
| x |
| b2 |
| b2 |
| b2 |
| b2 |
| b2 | ||
|
| b2 |
ËùÒÔb=¡À3£®£¨Â©-3£¬¿Û1·Ö£©¡£¨4·Ö£©
£¨2£©º¯Êýy=x2+
| c |
| x2 |
| 4 | c |
| 4 | c |
Ö¤Ã÷£ºº¯Êýy=x2+
| c |
| x2 |
| 4 | c |
ÔÚ£¨0£¬
| 4 | c |
Ôòy1-y2=
| x | 2 1 |
| c | ||
|
| x | 2 2 |
| c | ||
|
(
| ||||||||
|
¡ßx1£¬x2¡Ê£¨0£¬
| 4 | c |
¡ày1£¾y2
¡àº¯Êýy=x2+
| c |
| x2 |
| 4 | c |
£¨3£©×÷³öÍÆ¹ã£ºy=xn+
| a |
| xn |
ÔÚ£¨0£¬
| 2n | a |
| 2n | a |
»ò×÷³öÍÆ¹ã£ºy=x2n+
| a |
| x2n |
ÔÚ£¨0£¬
| (2•2n) | a |
| (2•2n) | a |
F£¨x£©=(x2+
| 1 |
| x |
| 1 |
| x2 |
=(x4+
| 1 |
| x4 |
| 1 |
| x2 |
| 1 |
| x |
[
| 1 |
| 2 |
µ±x=1ʱ£¬F£¨x£©min=8£»
µ±x=
| 1 |
| 2 |
| 405 |
| 16 |
µãÆÀ£º±¾ÌâµÄ¿¼µãÊǺ¯ÊýÓë·½³ÌµÄ×ÛºÏÔËÓã¬Ö÷Òª¿¼²éÓë»ù±¾²»µÈʽ½áºÏ£¬Ñо¿º¯ÊýµÄµ¥µ÷ÐÔ£¬²¢×öÍÆ¹ã£¬´Ó¶øÑо¿º¯ÊýµÄ×îÖµ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿