摘要:解:(1)在Rt△ABC中 ∵AB=BC·tan∠ACB ∴AB=60×tan30° =60× =20(米)-------------------4分 (2)在Rt△BDC中 ∵BC=DC·tan∠BDC =a×tan60° =a(米)-------------------7分 又在Rt△ABC中 AB=BC·tan∠ACB =a·tan30° =a· =a(米)---------------------10分 说明:计算过程中不带单位适当扣分,其中(2)问可利用全等解决.
网址:http://m.1010jiajiao.com/timu_id_4007544[举报]
(2012•朝阳)下列说法中正确的序号有
①在Rt△ABC中,∠C=90°,CD为AB边上的中线,且CD=2,则AB=4;
②八边形的内角和度数约为1080°;
③2、3、4、3这组数据的方差为0.5;
④分式方程
=
的解为x=
;
⑤已知菱形的一个内角为60°,一条对角线为2
,则另一条对角线长为2.
查看习题详情和答案>>
①②③④
①②③④
.①在Rt△ABC中,∠C=90°,CD为AB边上的中线,且CD=2,则AB=4;
②八边形的内角和度数约为1080°;
③2、3、4、3这组数据的方差为0.5;
④分式方程
| 1 |
| x |
| 3x-1 |
| x |
| 2 |
| 3 |
⑤已知菱形的一个内角为60°,一条对角线为2
| 3 |
阅读下面的材料,并回答所提出的问题:如图所示,在锐角三角形ABC中,求证:
=
这个三角形不是一个直角三角形,不能直接使用锐角三角函数的知识去处理,所以必须构造直角三角形,
过点A作AD⊥BC,垂足为D,则在Rt△ABD和Rt△ACD中由正弦定义可完成证明.
解:如图,过点A作AD⊥BC,垂足为D,
在Rt△ABD中,sinB=
,则AD=csinB
Rt△ACD中,sinC=
,则AD=bsinC
所以c sinB=b sinC,即
=
(1)在上述分析证明过程中,主要用到了下列三种数学思想方法的哪一种( )
A、数形结合的思想;B、转化的思想;C、分类的思想
(2)用上述思想方法解答下面问题.
在△ABC中,∠C=60°,AC=6,BC=8,求AB和△ABC的面积.
(3)用上述结论解答下面的问题(不必添加辅助线)
在锐角三角形ABC中,AC=10,AB=5
,∠C=60°,求∠B的度数.
查看习题详情和答案>>
| b |
| sinB |
| c |
| sinC |
这个三角形不是一个直角三角形,不能直接使用锐角三角函数的知识去处理,所以必须构造直角三角形,
解:如图,过点A作AD⊥BC,垂足为D,
在Rt△ABD中,sinB=
| AD |
| AB |
Rt△ACD中,sinC=
| AD |
| AC |
所以c sinB=b sinC,即
| b |
| sinB |
| c |
| sinC |
(1)在上述分析证明过程中,主要用到了下列三种数学思想方法的哪一种( )
A、数形结合的思想;B、转化的思想;C、分类的思想
(2)用上述思想方法解答下面问题.
在△ABC中,∠C=60°,AC=6,BC=8,求AB和△ABC的面积.
(3)用上述结论解答下面的问题(不必添加辅助线)
在锐角三角形ABC中,AC=10,AB=5
| 6 |