摘要:9.解不等式: 解:原不等式 ①∴a=2时,不等式的角为x>; ②a>2时,a-2>0, 故原不等式解为<x≤0或x≥a-2 ③当1<a<2时.a-2<0. ∴原不等式解为<x≤a-2或x≥0
网址:http://m.1010jiajiao.com/timu_id_4004426[举报]
古希腊数学家丢番图(公元250年前后)在《算术》中就提到了一元二次
方程的问题,不过当时古希腊人还没有寻求到它的求根公式,只能用图解等方法来求解。在欧几里得的《几何原本》中,形如
(a>0,b>0)的方程的图解法是:如图,以
和b为两直角边做Rt△ABC,再在斜边上截取
,则AD的长就是所求方程的解。
![]()
(1)请用含字母a、b的代数式表示AD的长。
(2)请利用你已学的知识说明该图解法的正确性,并说说这种解法的遗憾之处。
查看习题详情和答案>>请从下列三道题当中任选一题作答,如果多做,则按所做的第一题计分,请在答题卷上注明题号.
22-1设函数f(x)=|2x-1|+|2x-3|
(1)解不等式f(x)≤5x+1;
(2)若g(x)=
| 1 | ||
|
22-2如图,在△ABC中,CD是∠ACB的角平分线,△ACD的外接圆交BC于E,AB=2AC,
(1)求证:BE=2AD;
(2)当AC=1,BC=2时,求AD的长.
22-3已知P为半圆C:
|
| π |
| 3 |
(1)求以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标;
(2)求直线AM的参数方程.
选考题
请从下列三道题当中任选一题作答,如果多做,则按所做的第一题计分,请在答题卷上注明题号.
22-1设函数f(x)=|2x-1|+|2x-3|
(1)解不等式f(x)≤5x+1;
(2)若
定义域为R,求实数m的取值范围.
22-2如图,在△ABC中,CD是∠ACB的角平分线,△ACD的外接圆交BC于E,AB=2AC,
(1)求证:BE=2AD;
(2)当AC=1,BC=2时,求AD的长.
22-3已知P为半圆
上的点,点A的坐标为(1,0),O为坐标原点,点M在射线OP上,线段OM与半圆C上的弧AP的长度均为
(1)求以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标;
(2)求直线AM的参数方程.
查看习题详情和答案>>
请从下列三道题当中任选一题作答,如果多做,则按所做的第一题计分,请在答题卷上注明题号.
22-1设函数f(x)=|2x-1|+|2x-3|
(1)解不等式f(x)≤5x+1;
(2)若
22-2如图,在△ABC中,CD是∠ACB的角平分线,△ACD的外接圆交BC于E,AB=2AC,
(1)求证:BE=2AD;
(2)当AC=1,BC=2时,求AD的长.
22-3已知P为半圆
(1)求以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标;
(2)求直线AM的参数方程.
已知二次函数y=f1(x)的图象以原点为顶点且过点(1,1),反比例函数y=f2(x)的图象与直线y=x的两个交点间的距离为8,f(x)=f1(x)+f2(x)
(1)求函数f(x)的表达式;
(2)求证:当a>3时,关于x的方程f(x)=f(a)有三个不相等的实数解
| |||||||||||||||