摘要:10.平面内.在中..在上的射影为.则.拓展到空间.在三棱锥中.面在内的射影为.正确的结论是 A. B. C. D.
网址:http://m.1010jiajiao.com/timu_id_3989539[举报]
在平面几何里有射影定理:设△ABC的两边AB⊥AC,D是A点在BC上的射影,则AB2=BD·BC.拓展到空间,在四面体A-BCD中,DA⊥面ABC,点O是A在面BCD内的射影,且O在面BCD内,类比平面三角形射影定理,△ABC,△BOC,△BDC三者面积之间关系为________.
(1)求证:PD⊥AC;
(2)若PO=BC,求直线PD与AB所成的角;
(3)若平面APB与平面PCD所成的角为60°,求
| PO | BC |
(1)求证:EF⊥CD;
(2)求DB与平面DEF所成角的正弦值;
(3)在平面PAD内是否存在一点G,使G在平面PCB上的射影为△PCB的外心,若存在,试确定点G的位置;若不存在,说明理由.