摘要:奇函数:对于函数的定义域内任意一个.都有 (或).则称为奇函数.
网址:http://m.1010jiajiao.com/timu_id_3980737[举报]
函数
的定义域关于原点对称,但不包括数0,对定义域中的任意实数
,在定义域中存在
使
,
,且满足以下3个条件。
(1)
是
定义域中的数,
,则![]()
(2)
,(
是一个正的常数)
(3)当
时,
。
证明:(1)
是奇函数;
(2)
是周期函数,并求出其周期;
(3)
在
内为减函数。
查看习题详情和答案>>
函数
的定义域关于原点对称,但不包括数0,对定义域中的任意实数
,在定义域中存在
使
,
,且满足以下3个条件。
(1)
是
定义域中的数,
,则![]()
(2)
,(
是一个正的常数)
(3)当
时,
。
证明:(1)
是奇函数;
(2)
是周期函数,并求出其周期;
(3)
在
内为减函数。
查看习题详情和答案>>
函数
的定义域关于原点对称,但不包括数0,对定义域中的任意实数
,在定义域中存在
使
,
,且满足以下3个条件。
(1)
是
定义域中的数,
,则
(2)
,(
是一个正的常数)
(3)当
时,
。
证明:(1)
是奇函数;
(2)
是周期函数,并求出其周期;
(3)
在
内为减函数。
(1)
(2)
(3)当
证明:(1)
(2)
(3)
设函数f(x)的定义域关于原点对称,对定义域内任意的x存在x1和x2,使x=x1-x2,且满足:
(1)f(x1-x2)=
;
(2)当0<x<4时,f(x)>0
请回答下列问题:
(1)判断函数的奇偶性并给出理由;
(2)判断f(x)在(0,4)上的单调性并给出理由.
查看习题详情和答案>>
(1)f(x1-x2)=
| f(x1)-f(x2) | 1+f(x1)•f(x2) |
(2)当0<x<4时,f(x)>0
请回答下列问题:
(1)判断函数的奇偶性并给出理由;
(2)判断f(x)在(0,4)上的单调性并给出理由.
(1)已知函数
的定义域为
,
是奇函数,且当
时,
,若函数
的零点恰有两个,则实数
的取值范围是( )
| A. | B. |
| C. | D. |
①
②
③
④
上述结论中正确结论的序号是________. 查看习题详情和答案>>