摘要:设函数 函数g(x)的递减区间是 . 解析:依题意有g(x)=x2 f(x-1)= 所以g(x)的递减区间是(0,1). 答案:(0,1)
网址:http://m.1010jiajiao.com/timu_id_3971471[举报]
已知函数f(x)=sin(ωx+?)(ω>0,0<?<π)的图象与直线y=b(-1<b<0)的三个相邻交点的横坐标分别是1,2,4.
(1)求f(x)的解析式,并写出f(x)的单调递减区间;
(2)设g(x)=f(2x)+f(x),求函数g(x)的值域.
查看习题详情和答案>>
(1)求f(x)的解析式,并写出f(x)的单调递减区间;
(2)设g(x)=f(2x)+f(x),求函数g(x)的值域.
已知函数f(x)=sin(ωx+ϕ)(ω>0,0<ϕ<π)的图象与直线y=b(-1<b<0)的三个相邻交点的横坐标分别是1,2,4.
(1)求f(x)的解析式,并写出f(x)的单调递减区间;
(2)设g(x)=f(2x)+f(x),求函数g(x)的值域.
查看习题详情和答案>>
(1)求f(x)的解析式,并写出f(x)的单调递减区间;
(2)设g(x)=f(2x)+f(x),求函数g(x)的值域.
查看习题详情和答案>>
已知函数f(x)=sin(ωx+?)(ω>0,0<?<π)的图象与直线y=b(-1<b<0)的三个相邻交点的横坐标分别是1,2,4.
(1)求f(x)的解析式,并写出f(x)的单调递减区间;
(2)设g(x)=f(2x)+f(x),求函数g(x)的值域.
查看习题详情和答案>>
已知函数
的图象与直线![]()
的三个相邻交点的
横坐标分别是1,2,4.
(Ⅰ)求f(x)的解析式,并写出f(x)的单调递减区间;
(Ⅱ)设g(x)=f(2x)+f(x),求函数g(x)的值域.
| ln(2-x2) |
| |x+2|-2 |
(1)试判断f(x)的奇偶性并给予证明;
(2)求证:f(x)在区间(0,1)单调递减;
(3)如图给出的是与函数f(x)相关的一个程序框图,试构造一个公差不为零的等差数列
{an},使得该程序能正常运行且输出的结果恰好为0.请说明你的理由.
(文)如图,在平面直角坐标系中,方程为x2+y2+Dx+Ey+F=0的圆M的内接四边形ABCD的对角线AC和BD互相垂直,且AC和BD分别在x轴和y轴上.
(1)求证:F<0;
(2)若四边形ABCD的面积为8,对角线AC的长为2,且
| AB |
| AD |
(3)设四边形ABCD的一条边CD的中点为G,OH⊥AB且垂足为H.试用平面解析几何的研究方法判
断点O、G、H是否共线,并说明理由. 查看习题详情和答案>>