摘要:设函数交于点P.若过P的切线方程为.且当x=2时.函数取极值-16.试求的解析式.并求这个函数的单调递减区间.
网址:http://m.1010jiajiao.com/timu_id_3960167[举报]
设函数y=f(x)=ax3+bx2+cx+d的图像与y轴交于点P,若过点P的切线方程为12x+y-29=0,且当x=4时,函数f(x)取到极值-19,试求函数f(x)的解析式,并求这个函数的递减区间.
(普通班)设函数
,其中常数
;(1)讨论
的单调性;(2)若
,当
,
恒成立,求
的取值范围。
(实验班)已知椭圆
(0<b<2)的离心率等于
抛物线
(p>0).
(1)若抛物线的焦点F在椭圆的顶点上,求椭圆和抛物线的方程;
(2)若抛物线的焦点F为
,在抛物线上是否存在点P,使得过点P的切线与椭圆相交于A,B两点,且满足
?若存在,求出点P的坐标;若不存在,请说明理由.
查看习题详情和答案>>
(I)求证:直线DE为圆O的切线;
(Ⅱ)设CE交圆O于点F,求证:CD•CA=CF•CE
(选修4-4)在平面直角坐标系xoy中,圆C的参数方程为
|
| π |
| 3 |
(I)写出圆C的标准方程和直线l的参数方程;
(Ⅱ)设直线l与圆C相交于A,B两点,求|PA|-|PB|的值.
(选修4-5)已知函数f(x)=|2x+1|,g(x)=|x|+a
(Ⅰ)当a=0时,解不等式f(x)≥g(x);
(Ⅱ)若存在x∈R,使得f(x)≤g(x)成立,求实数a的取值范围.
(选修4-1)如图,在△ABC中,∠ABC=90°,以BC为直径的圆O交AC于点D,设E为AB的中点.
(I)求证:直线DE为圆O的切线;
(Ⅱ)设CE交圆O于点F,求证:CD•CA=CF•CE
(选修4-4)在平面直角坐标系xoy中,圆C的参数方程为
(θ为参数),直线l经过点p(2,2),倾斜角a=
.
(I)写出圆C的标准方程和直线l的参数方程;
(Ⅱ)设直线l与圆C相交于A,B两点,求|PA|-|PB|的值.
(选修4-5)已知函数f(x)=|2x+1|,g(x)=|x|+a
(Ⅰ)当a=0时,解不等式f(x)≥g(x);
(Ⅱ)若存在x∈R,使得f(x)≤g(x)成立,求实数a的取值范围.
查看习题详情和答案>>
(I)求证:直线DE为圆O的切线;
(Ⅱ)设CE交圆O于点F,求证:CD•CA=CF•CE
(选修4-4)在平面直角坐标系xoy中,圆C的参数方程为
(I)写出圆C的标准方程和直线l的参数方程;
(Ⅱ)设直线l与圆C相交于A,B两点,求|PA|-|PB|的值.
(选修4-5)已知函数f(x)=|2x+1|,g(x)=|x|+a
(Ⅰ)当a=0时,解不等式f(x)≥g(x);
(Ⅱ)若存在x∈R,使得f(x)≤g(x)成立,求实数a的取值范围.