ÌâÄ¿ÄÚÈÝ
£¨Ñ¡ÐÞ4-1£©Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏABC=90°£¬ÒÔBCΪֱ¾¶µÄÔ²O½»ACÓÚµãD£¬ÉèEΪABµÄÖе㣮£¨I£©ÇóÖ¤£ºÖ±ÏßDEΪԲOµÄÇÐÏߣ»
£¨¢ò£©ÉèCE½»Ô²OÓÚµãF£¬ÇóÖ¤£ºCD•CA=CF•CE
£¨Ñ¡ÐÞ4-4£©ÔÚÆ½ÃæÖ±½Ç×ø±êϵxoyÖУ¬Ô²CµÄ²ÎÊý·½³ÌΪ
£¨I£©Ð´³öÔ²CµÄ±ê×¼·½³ÌºÍÖ±ÏßlµÄ²ÎÊý·½³Ì£»
£¨¢ò£©ÉèÖ±ÏßlÓëÔ²CÏཻÓÚA£¬BÁ½µã£¬Çó|PA|-|PB|µÄÖµ£®
£¨Ñ¡ÐÞ4-5£©ÒÑÖªº¯Êýf£¨x£©=|2x+1|£¬g£¨x£©=|x|+a
£¨¢ñ£©µ±a=0ʱ£¬½â²»µÈʽf£¨x£©¡Ýg£¨x£©£»
£¨¢ò£©Èô´æÔÚx¡ÊR£¬Ê¹µÃf£¨x£©¡Üg£¨x£©³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®
¡¾´ð°¸¡¿·ÖÎö£º£¨Ñ¡ÐÞ4-1£©£¨¢ñ£©ÀûÓÃÌõ¼þ¡¢µÈÑüÈý½ÇÐεÄÐÔÖÊÇóµÃ¡ÏEDO=¡ÏEDB+¡ÏODB=¡ÏEBD+¡ÏOBD=90°£¬¿ÉµÃÖ±ÏßDEΪԲOµÄÇÐÏߣ®
£¨¢ò£©Á¬½ÓDF£¬ÔòÓСÏDFC=¡ÏDBC£¬Ö¤Ã÷ D¡¢A¡¢E¡¢FËĵ㹲Բ£¬¿ÉµÃ CD•CA=CF•CE£®
£¨Ñ¡ÐÞ4-4£©£¨¢ñ£©°ÑÔ²µÄ²ÎÊý·½³ÌÀûÓÃͬ½ÇÈý½Çº¯ÊýµÄ»ù±¾¹ØÏµÏûÈ¥²ÎÊý£¬»¯Îª±ê×¼·½³Ì£®°ÑÖ±ÏßlµÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊý£¬»¯ÎªÖ±½Ç×ø±ê·½³Ì£®
£¨¢ò£©°ÑÖ±Ïߵķ½³Ì´úÈëÔ²µÄ·½³Ì£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµÒÔ¼°²ÎÊýµÄ¼¸ºÎÒâÒåÇóµÃ|PA|•|PB|µÄÖµ£®
£¨Ñ¡ÐÞ4-5£©£¨¢ñ£©µ± a=0 ʱ£¬ÓÉf£¨x£©¡Ýg£¨x£© µÃ|2x+1|¡Ýx£¬Á½±ßƽ·½ÕûÀíµÃ 3x2+4x+1¡Ý0£¬½â´ËÒ»Ôª¶þ´Î²»µÈʽÇóµÃxµÄ·¶Î§£¬¼´ÎªËùÇó£®
£¨¢ò£©ÓÉ f£¨x£©¡Üg£¨x£© µÃ a¡Ý|2x+1|-|x|£¬Áîh£¨x£©=|2x+1|-|x|£¬ÇóµÃ h£¨x£©µÄ×îСֵ£¬¼´¿ÉÇóµÃʵÊýaµÄȡֵ·¶Î§£®
½â´ð£º£¨Ñ¡ÐÞ4-1£©£¨¢ñ£©Ö¤Ã÷£ºÁ¬½ÓBD¡¢OD£¬ÔÚRt¡÷ABDÖУ¬DE=
=BE£¬ÔòÔÚµÈÑüÈý½ÇÐÎEBDÖУ¬¡ÏEBD=¡ÏEDB£®
ÔÚµÈÑüÈý½ÇÐÎOBDÖУ¬¡ÏOBD=¡ÏODB£¬¿ÉµÃ¡ÏEDO=¡ÏEDB+¡ÏODB=¡ÏEBD+¡ÏOBD=90°£¬
¼´Ö±ÏßDEΪԲOµÄÇÐÏߣ®

£¨¢ò£©Á¬½ÓDF£¬ÔòÓСÏDFC=¡ÏDBC£¬
ÓÖÒòΪ¡ÏA=¡ÏDBC£¬¿ÉµÃ¡ÏA=¡ÏDFC£¬ÔòÓÐ D¡¢A¡¢E¡¢FËĵ㹲Բ£®
Òò´ËµÃµ½CD•CA=CF•CE£®
£¨Ñ¡ÐÞ4-4£©½â£º£¨¢ñ£©Ô²µÄ±ê×¼·½³ÌΪ x2+y2=16£¬
Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
£¬¼´
£¨tΪ²ÎÊý£©£®
£¨¢ò£©°ÑÖ±Ïߵķ½³Ì
´úÈë x2+y2=16£¬
µÃ
+
=16£¬t2+2£¨
+1£©t-8=0£®
ËùÒÔ t1•t2=-8£¬¼´|PA|•|PB|=8£®
£¨Ñ¡ÐÞ4-5£©½â£º£¨¢ñ£©µ± a=0 ʱ£¬ÓÉf£¨x£©¡Ýg£¨x£© µÃ|2x+1|¡Ýx£¬
Á½±ßƽ·½ÕûÀíµÃ 3x2+4x+1¡Ý0£¬
½âÖ®µÃx¡Ü-1£¬»ò x¡Ý-
£¬¡àÔ²»µÈʽµÄ½â¼¯Îª£¨-¡Þ£¬-1]¡È[-
£¬+¡Þ£©£®
£¨¢ò£©ÓÉ f£¨x£©¡Üg£¨x£© µÃ a¡Ý|2x+1|-|x|£¬
Áîh£¨x£©=|2x+1|-|x|£¬Ôò h£¨x£©=
£¬¡àh£¨x£© µÄ×îСֵΪh£¨-
£©=-
£¬
´Ó¶øËùÇóʵÊý aµÄ·¶Î§Îª[-
£¬+¡Þ£©£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÔ²µÄ²ÎÊý·½³Ì¡¢Ô²µÄÇÐÏß·½³Ì¡¢ÓëÔ²ÓйصıÈÀýÏ߶Σ¬¾ø¶ÔÖµ²»µÈʽµÄ½â·¨£¬ÊôÓÚÖеµÌ⣮
£¨¢ò£©Á¬½ÓDF£¬ÔòÓСÏDFC=¡ÏDBC£¬Ö¤Ã÷ D¡¢A¡¢E¡¢FËĵ㹲Բ£¬¿ÉµÃ CD•CA=CF•CE£®
£¨Ñ¡ÐÞ4-4£©£¨¢ñ£©°ÑÔ²µÄ²ÎÊý·½³ÌÀûÓÃͬ½ÇÈý½Çº¯ÊýµÄ»ù±¾¹ØÏµÏûÈ¥²ÎÊý£¬»¯Îª±ê×¼·½³Ì£®°ÑÖ±ÏßlµÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊý£¬»¯ÎªÖ±½Ç×ø±ê·½³Ì£®
£¨¢ò£©°ÑÖ±Ïߵķ½³Ì´úÈëÔ²µÄ·½³Ì£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµÒÔ¼°²ÎÊýµÄ¼¸ºÎÒâÒåÇóµÃ|PA|•|PB|µÄÖµ£®
£¨Ñ¡ÐÞ4-5£©£¨¢ñ£©µ± a=0 ʱ£¬ÓÉf£¨x£©¡Ýg£¨x£© µÃ|2x+1|¡Ýx£¬Á½±ßƽ·½ÕûÀíµÃ 3x2+4x+1¡Ý0£¬½â´ËÒ»Ôª¶þ´Î²»µÈʽÇóµÃxµÄ·¶Î§£¬¼´ÎªËùÇó£®
£¨¢ò£©ÓÉ f£¨x£©¡Üg£¨x£© µÃ a¡Ý|2x+1|-|x|£¬Áîh£¨x£©=|2x+1|-|x|£¬ÇóµÃ h£¨x£©µÄ×îСֵ£¬¼´¿ÉÇóµÃʵÊýaµÄȡֵ·¶Î§£®
½â´ð£º£¨Ñ¡ÐÞ4-1£©£¨¢ñ£©Ö¤Ã÷£ºÁ¬½ÓBD¡¢OD£¬ÔÚRt¡÷ABDÖУ¬DE=
ÔÚµÈÑüÈý½ÇÐÎOBDÖУ¬¡ÏOBD=¡ÏODB£¬¿ÉµÃ¡ÏEDO=¡ÏEDB+¡ÏODB=¡ÏEBD+¡ÏOBD=90°£¬
¼´Ö±ÏßDEΪԲOµÄÇÐÏߣ®
£¨¢ò£©Á¬½ÓDF£¬ÔòÓСÏDFC=¡ÏDBC£¬
ÓÖÒòΪ¡ÏA=¡ÏDBC£¬¿ÉµÃ¡ÏA=¡ÏDFC£¬ÔòÓÐ D¡¢A¡¢E¡¢FËĵ㹲Բ£®
Òò´ËµÃµ½CD•CA=CF•CE£®
£¨Ñ¡ÐÞ4-4£©½â£º£¨¢ñ£©Ô²µÄ±ê×¼·½³ÌΪ x2+y2=16£¬
Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
£¨¢ò£©°ÑÖ±Ïߵķ½³Ì
µÃ
ËùÒÔ t1•t2=-8£¬¼´|PA|•|PB|=8£®
£¨Ñ¡ÐÞ4-5£©½â£º£¨¢ñ£©µ± a=0 ʱ£¬ÓÉf£¨x£©¡Ýg£¨x£© µÃ|2x+1|¡Ýx£¬
Á½±ßƽ·½ÕûÀíµÃ 3x2+4x+1¡Ý0£¬
½âÖ®µÃx¡Ü-1£¬»ò x¡Ý-
£¨¢ò£©ÓÉ f£¨x£©¡Üg£¨x£© µÃ a¡Ý|2x+1|-|x|£¬
Áîh£¨x£©=|2x+1|-|x|£¬Ôò h£¨x£©=
´Ó¶øËùÇóʵÊý aµÄ·¶Î§Îª[-
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÔ²µÄ²ÎÊý·½³Ì¡¢Ô²µÄÇÐÏß·½³Ì¡¢ÓëÔ²ÓйصıÈÀýÏ߶Σ¬¾ø¶ÔÖµ²»µÈʽµÄ½â·¨£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿