摘要:23. 甲.乙.丙三台机床各自独立地加工同一种零件.已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为,甲.丙两台机床加工的零件都是一等品的概率为. (Ⅰ)分别求甲.乙.丙三台机床各自加工零件是一等品的概率, (Ⅱ)从甲.乙.丙加工的零件中各取一个检验.求至少有一个一等品的概率
网址:http://m.1010jiajiao.com/timu3_id_4464787[举报]
(2012年高考(湖南理))已知两条直线
:y=m 和
: y=
(m>0),
与函数
的图像从左至右相交于点A,B ,
与函数
的图像从左至右相交于C,D .记线段AC和BD在X轴上的投影长度分别为a ,b ,当m 变化时,
的最小值为 ( )
A.
B.
C.
D.
(2012年高考(湖南理))已知数列{an}的各项均为正数,记A(n)=a1+a2++an,B(n)=a2+a3++an+1,C(n)=a3+a4++an+2,n=1,2。
(1) 若a1=1,a2=5,且对任意n∈N﹡,三个数A(n),B(n),C(n)组成等差数列,求数列{ an }的通项公式.
(2) 证明:数列{ an }是公比为q的等比数列的充分必要条件是:对任意
,三个数A(n),B(n),C(n)组成公比为q的等比数列.
(2012湖南理)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
| 一次购物量 | 1至4件 | 5至8件 | 9至12件 | 13至16件 | 17件及以上 |
| 顾客数(人) |
| 30 | 25 |
| 10 |
| 结算时间(分钟/人) | 1 | 1.5 | 2 | 2.5 | 3 |
已知这100位顾客中的一次购物量超过8件的顾客占55%.
(Ⅰ)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;
(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2 钟的概率.
(注:将频率视为概率)
查看习题详情和答案>>