题目内容

10.如图所示,在半径为R的光滑半球形碗的最低点P处固定两原长相同的轻质弹簧,弹簧的另一端与质量均为m的小球相连,当两小球分别在A、B两点静止不动时,0A、0B与0P之间的夹角满足α<β,已知弹簧不弯曲且始终在弹性限度内,则下列说法正确的是(  )
A.静止在A点的小球对碗内壁的压力较小
B.静止在B点的小球对碗内壁的压力较小
C.静止在A点的小球对碗内壁的弹力较大
D.P、B之间弹簧的劲度系数比P、A之间弹簧的劲度系数大

分析 因为α<β,结合几何关系可知,AP<BP,对两小球受力分析,画出受力分析图,根据平行四边形定则做出力的平行四边形,根据三角形的相似比列式结合胡克定律求解.

解答 解:A、因为α<β,结合几何关系可知,AP<BP,
对两小球受力分析如图所示,

都是受重力、支持力和弹簧的弹力三个力,两小球静止,受力平衡,根据平行四边形定则作平行四边形,有几何关系可知:
△FAAGA′∽△APO,△GB′BFB∽△OPB,则有:$\frac{{N}_{A}}{{G}_{A}}=\frac{OA}{OP}=\frac{R}{R}=1$,$\frac{{N}_{B}}{{G}_{B}}=\frac{OB}{OP}=\frac{R}{R}=1$,
即支持力始终与重力相等,两球质量相等,重力相等,则所受支持力相等,对对碗内壁的压力必然相等,故ABC错误;
D、$\frac{{F}_{A}}{{G}_{A}}=\frac{AP}{OP}$,$\frac{{F}_{B}}{{G}_{B}}=\frac{BP}{OP}$,且AP<BP,GA=GB=mg,
解得:FB>FA
而两弹簧原长相等,则PA之间的形变量大,根据胡克定律F=k△x,可知P、B之间弹簧的劲度系数比P、A之间弹簧的劲度系数大,故D正确.
故选:D

点评 本题主要考查了同学们受力分析的能力,根据根据平行四边形定则做出力的平行四边形,能找到力三角形和几何三角形的相似关系,难度适中.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网