ÌâÄ¿ÄÚÈÝ
4£®A¡¢Å£/¿â B¡¢Å£/½¹ C¡¢½¹/¿â D¡¢¿â/Å£
£¨2£©¹ØÓڴŸÐÏߣ®ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇD
A¡¢Á½Ìõ´Å¸ÐÏß¿ÉÒÔÏཻ
B¡¢´Å¸ÐÏßÊǴų¡ÖÐʵ¼Ê´æÔÚµÄÏß
C¡¢´Å¸ÐÏß×ÜÊÇ´ÓN¼«³ö·¢£¬µ½S¼«ÖÕÖ¹
D¡¢´Å¸ÐÏßµÄÊèÃ̶ܳȷ´Ó³´Å³¡µÄÇ¿Èõ
£¨3£©µç·¹¹øÔÚ220v¶î¶¨µçѹϹ¤×÷´ïµ½¶î¶¨¹¦ÂÊ700wʱ£¬Í¨¹ýµç·¹¹øµÄµçÁ÷ԼΪA
A¡¢3.2A B¡¢3.5A C¡¢2.8A D¡¢3.4A
£¨4£©ÈçͼËùʾÊÇÒ»¸ö°´ÕýÏÒ¹æÂɱ仯µÄ½»±äµçÁ÷µÄÏÖÏ󣬸ù¾ÝͼÏó¿ÉÖª¸ÃÕýÏÒ½»±äµçÁ÷µÄÖÜÆÚÊÇB
A¡¢0.02s B¡¢0.04s C¡¢0.06s D¡¢20s
£¨5£©¡°±±¶·¡±µ¼º½ÎÀÐÇÏòµØÃæ·¢É䯵ÂÊΪ1.5¡Á109HzµÄµç´Å²¨£¬Æä²¨³¤Îª0.2m£¨Õæ¿ÕÖйâËÙΪ3¡Á108m/s£©£®µç´Å²¨ÔÚ½øÈëµØÇò´óÆø²ãºóƵÂʲ»±ä£¨Ñ¡Ìî¡°Ôö´ó¡±¡¢¡°²»±ä¡±»ò¡°¼õС¡±£©£®
£¨6£©¼ÙÉèÔÚÕæ¿ÕÖÐÓÐÁ½¸ö´øÕýµçµÄµãµçºÉ£¬µçºÉÁ¿¾ùΪQ=1C£¬ËüÃÇÖ®¼äµÄ¾àÀër=3m£®¾²µçÁ¦³£Á¿K=9.0¡Á109N•m2/c2£®Çó£º
£¨1£©ÕâÁ½¸öµãµçºÉÖ®¼äµÄ¾²µçÁ¦ÊÇÒýÁ¦»¹ÊdzâÁ¦£»
£¨2£©ÕâÁ½¸öµãµçºÉÖ®¼äµÄ¾²µçÁ¦F´óС£®
·ÖÎö £¨1£©¹ú¼Êµ¥Î»Öƹ涨ÁËÆß¸ö»ù±¾ÎïÀíÁ¿£®·Ö±ðΪ³¤¶È¡¢ÖÊÁ¿¡¢Ê±¼ä¡¢ÈÈÁ¦Ñ§Î¶ȡ¢µçÁ÷¡¢¹âÇ¿¶È¡¢ÎïÖʵÄÁ¿£®ËüÃǵÄÔÚ¹ú¼Êµ¥Î»ÖÆÖеĵ¥Î»³ÆÎª»ù±¾µ¥Î»£¬¶øÎïÀíÁ¿Ö®¼äµÄ¹ØÏµÊ½ÍƵ½³öÀ´µÄÎïÀíÁ¿µÄµ¥Î»½Ð×öµ¼³öµ¥Î»£®
£¨2£©¸ù¾Ý´Å³¡µÄÐÔÖʺʹŸÐÏßµÄÌØµã·ÖÎö£®´ÅÌåÖÜΧ´æÔÚ×Ŵų¡£¬ÎªÁËÐÎÏóÃèÊö´Å³¡¶øÒýÈëÁ˴ŸÐÏߵĸÅÄÔÚ´ÅÌåÍⲿ£¬´Å¸ÐÏßÊÇ´ÓN¼«·¢³ö£¬»Øµ½S¼«£®
£¨3£©ÓÉP=UIÇóµÃµçÁ÷£»
£¨4£©ÓÉͼÏóÇóµÃÖÜÆÚ£»
£¨5£©ÓÉv=¦ËfµÃÇóµÃ²¨³¤£¬ÆµÂʲ»±ä£»
£¨6£©Í¬ÖÖµçºÉÏ໥Åų⣬¸ù¾ÝÓÉF=$\frac{k{Q}^{2}}{{r}^{2}}$ÇóµÃµç³¡Á¦
½â´ð ½â£º£¨1£©¸ù¾Ýµç³¡Ç¿¶ÈµÄ¶¨ÒåʽE=$\frac{F}{q}$£¬¿ÉÖª£¬Á¦µÄµ¥Î»ÊÇÅ£¶Ù£¬µçºÉµÄµ¥Î»ÊÇ¿âÂØ£¬ËùÒԵ糡ǿ¶ÈµÄµ¥Î»ÊÇÅ£/¿â£¬¹ÊAÕýÈ·£»
£¨2£©A¡¢ÈôÁ½Ìõ´Å¸ÐÏß¿ÉÒÔÏཻ£¬Ôò½»µã´¦¾Í¿ÉÒÔ×ö³öÁ½¸ö´Å¸ÐÏߵķ½Ïò£¬¼´¸Ãµã´Å³¡·½Ïò¾Í»áÓÐÁ½¸ö£¬ÕâÓëÀíÂÛÏàì¶Ü£¬Òò´Ë´Å¸ÐÏß²»ÄÜÏཻ£¬¹ÊA´íÎó£»
B¡¢´Å¸ÐÏßÊÇΪÁËÃèÊö´Å³¡µÄÐÔÖʶøÒýÈëµÄ£¬ÊDz»´æÔڵ쬹ÊB´íÎó£»
C¡¢´Å¸ÐÏßÊDZպϵÄÇúÏߣ¬¹ÊC´íÎó£»
D¡¢´Å¸ÐÏßµÄÊèÃ̶ܳȷ´Ó³´Å³¡µÄÇ¿Èõ£¬¹ÊDÕýÈ·£»¹ÊÑ¡£ºD
£¨3£©ÓÐP=UI¿ÉµÃ
I=$\frac{P}{U}=\frac{700}{220}A=3.2A$£¬¹ÊAÕýÈ·£»
£¨4£©ÓÐͼÏó¿ÉÖªÖÜÆÚT=0.04s£¬¹ÊBÕýÈ·
£¨5£©ÓÉv=¦ËfµÃ$¦Ë=\frac{v}{f}=\frac{3¡Á1{0}^{8}}{1.5¡Á1{0}^{9}}m=0.2m$
£¨6£©¢ÙͬÖÖµçºÉÏ໥Åųâ
¢ÚÓÉF=$\frac{k{Q}^{2}}{{r}^{2}}$µÃ$F=9¡Á1{0}^{9}¡Á\frac{{1}^{2}}{{3}^{2}}N=1¡Á1{0}^{9}N$
¹Ê´ð°¸Îª£º£¨1£©A£¬£¨2£©D£¬£¨3£©A£¬£¨4£©B£¬£¨5£©0.2£¬²»±ä£¨6£©¢Ù³âÁ¦£¬¢Ú1¡Á10-9N
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁ˵糡¡¢´Å³¡¡¢½»Á÷µçµÄͼÏó¡¢¼°µçºÉ¼äµÄÏ໥×÷ÓõȵĻù±¾ÖªÊ¶£¬Êì¼Ç¹«Ê½»ò¸ÅÄî¼´¿É½â¾öÎÊÌâ
| A£® | E1£¼E2£¼E3 | |
| B£® | v3=v2+v1 | |
| C£® | ÉÏÃæ¹Û²âµ½ÆµÂÊ·Ö±ðΪv1¡¢v2¡¢v3µÄÈýÌõÆ×Ïß¶¼ÄÜʹ¼«ÏÞÆµÂÊΪv0½ðÊô±íÃæÒݳöµç×Ó | |
| D£® | $\frac{1}{{v}_{1}}=\frac{1}{{v}_{2}}+\frac{1}{{v}_{3}}$ | |
| E£® | ÉÏÃæ¹Û²âµ½ÆµÂÊ·Ö±ðΪv1¡¢v2¡¢v3µÄÈýÌõÆ×ÏßÕæ¿ÕÖÐ×²¨³¤Îª$\frac{c}{{v}_{1}}$ |
| A£® | TA=TB=TC | B£® | TA=TC£¼TB | C£® | TA=TB£¾TC | D£® | TA£¾TB£¾TC |