ÌâÄ¿ÄÚÈÝ
19£®½ñÄêÊǰ®Òò˹̹ÏÁÒåÏà¶ÔÂÛ·¢±í110ÖÜÄ꣬¸ù¾ÝËûµÄÀíÂÛ£¬ÎïÌåÔÚÔ˶¯·½ÏòµÄ³¤¶È»áËõ¶Ì£¬¾²Ö¹Ê±Ñض«Î÷·½Ïòˮƽ·ÅÖᢳ¤Îªl0µÄÖ±³ß£¬µ±ËüÒԺ㶨ËÙ¶ÈvÏò¶«Ô˶¯Ê±£¬µØÃæÉϹ۲âÕß²âµÃÖ±³ßÔÚÔ˶¯·½ÏòµÄ³¤¶ÈΪ1£¬ËüÃÇÖ®¼äµÄ¹ØÏµ¿ÉÓÃl=l0$\sqrt{1-\frac{{v}^{2}}{{c}^{2}}}$±íʾ£¬ÆäÖÐcΪ¹âÔÚÕæ¿ÕÖд«²¥µÄËÙ¶È£®Èô¸ÃÖ±³ßÓëˮƽ·½Ïò³É¦È½ÇÏò¶«Ô˶¯£¬ÔòµØÃæÉϹ۲âÕß²âµÃµÄÖ±³ß³¤¶ÈÊÇ£¨¡¡¡¡£©| A£® | $\sqrt{£¨{l}_{0}\sqrt{1-\frac{{v}^{2}}{{c}^{2}}}cos¦È£©^{2}-£¨{l}_{0}sin¦È£©^{2}}$ | B£® | $\sqrt{£¨{l}_{0}\sqrt{1-\frac{{v}^{2}}{{c}^{2}}}cos¦È£©^{2}+£¨{l}_{0}sin¦È£©^{2}}$ | ||
| C£® | $\sqrt{£¨{l}_{0}\sqrt{1-\frac{{v}^{2}}{{c}^{2}}}sin¦È£©^{2}-£¨{l}_{0}cos¦È£©^{2}}$ | D£® | $\sqrt{£¨{l}_{0}\sqrt{1-\frac{{v}^{2}}{{c}^{2}}}sin¦È£©^{2}+£¨{l}_{0}cos¦È£©^{2}}$ |
·ÖÎö °®Òò˹̹ÏÁÒåÏà¶ÔÂ۵Ļù±¾½áÂÛÖ®Ò»ÊÇÔ˶¯ÎïÌ峤¶È»áÊÕËõ£¬¼´l=l0$\sqrt{1-\frac{{v}^{2}}{{c}^{2}}}$£¬ËüÊÇÒòʱ¿ÕÌõ¼þ²»Í¬¶øÒýÆðµÄ¹Û²âЧӦ£®
½â´ð ½â£ºÔÚÖ±³ßÔ˶¯µÄ¹ý³ÌÖУ¬ÑØÔ˶¯·½ÏòµÄ³¤¶ÈËõ¶Ì£¬${l}_{x}={l}_{0}cos¦È•\sqrt{1-\frac{{v}^{2}}{{c}^{2}}}$
´¹Ö±ÓÚËٶȵķ½ÏòÉÏÖ±³ßµÄ³¤¶È²»±ä£¬Ôò£ºly=l0•sin¦È
ËùÒÔÈô¸ÃÖ±³ßÓëˮƽ·½Ïò³É¦È½ÇÏò¶«Ô˶¯£¬ÔòµØÃæÉϹ۲âÕß²âµÃµÄÖ±³ß³¤¶ÈÊÇ£ºl=$\sqrt{{l}_{x}^{2}+{l}_{y}^{2}}$=$\sqrt{£¨{l}_{0}\sqrt{1-\frac{{v}^{2}}{{c}^{2}}}cos¦È£©^{2}+£¨{l}_{0}sin¦È£©^{2}}$
¹ÊÑ¡£ºB
µãÆÀ ¸ÃÌ⿼²é¶Ô°®Òò˹̹ÏÁÒåÏà¶ÔÂÛµÄÀí½â£¬Ã÷È·³ßËõЧӦÊÇÖ¸ÔÚÔ˶¯µÄ·½ÏòÉÏ£¬ÎïÌåµÄ³¤¶È¼õС£¬µ«ÓëÔ˶¯µÄ·½Ïò´¹Ö±µÄ·½ÏòÉϵij¤¶È²»»á·¢Éú±ä»¯£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
9£®Ò»Ö»´ÅµçʽµçÁ÷±í£¬Æä¶ÁÊý×ÜÊDZȱê×¼µçÁ÷±íƫС£¬Îª¾ÀÕýÕâÒ»Îó²î£¬¿ÉÐеĴëÊ©ÊÇ£¨¡¡¡¡£©
| A£® | ¼õСÓÀ¾Ã´ÅÌúµÄ´ÅÐÔ | B£® | ¼õÉÙ±íÍ·ÏßȦµÄÔÑÊý | ||
| C£® | ¼õÉÙ·ÖÁ÷µç×èµÄ×èÖµ | D£® | Ôö¼Ó±íÍ·ÏßȦµÄÔÑÊý |
7£®¹ØÓÚ³¬ÖغÍÊ§ÖØ£¬ÏÂÁÐ˵·¨ÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | ³¬ÖؾÍÊÇÎïÌåÖØÁ¦Ôö´óÁË | |
| B£® | Ê§ÖØ¾ÍÊÇÎïÌåÊܵÄÖØÁ¦¼õСÁË | |
| C£® | ÍêÈ«Ê§ÖØ¾ÍÊÇÍêÈ«²»ÊÜÖØÁ¦×÷Óà | |
| D£® | ÎÞÂÛ³¬ÖØ¡¢Ê§ÖØ»òÍêÈ«ÖØÁ¦£¬ÎïÌåËùÊÜÖØÁ¦²»±ä |
4£®ÏÂÃæ¹ØÓÚÅöײµÄÀí½â£¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | ÅöײÊÇÖ¸Ïà¶ÔÔ˶¯µÄÎïÌåÏàÓöʱ£¬ÔÚ¼«¶Ìʱ¼äÄÚËüÃǵÄÔ˶¯×´Ì¬·¢ÉúÏÔÖø±ä»¯µÄ¹ý³Ì | |
| B£® | ÔÚÅöײÏÖÏóÖУ¬Ò»°ãÀ´ËµÎïÌåËùÊܵÄÍâÁ¦×÷Óò»ÄܺöÂÔ | |
| C£® | Èç¹ûÅöײ¹ý³ÌÖж¯Äܲ»±ä£¬ÔòÕâÑùµÄÅöײ½Ð×ö·Çµ¯ÐÔÅöײ | |
| D£® | ¸ù¾ÝÅöײ¹ý³ÌÖж¯ÄÜÊÇ·ñÊØºã£¬Åöײ¿É·ÖΪÕýÅöºÍбÅö |