ÌâÄ¿ÄÚÈÝ
7£®£¨1£©ab¸Ë×öÔÈËÙÖ±ÏßÔ˶¯¹ý³ÌÖУ¬ÍâÁ¦FµÄ¹¦ÂÊ£»
£¨2£©Èô¦ÁÁ£×ÓÓëԲͲ±ÚÅöײ5´ÎºóÇ¡ÓÖ´Óa¿×±³ÀëÔ²ÐÄÉä³ö£¬ºöÂÔ¦ÁÁ£×Ó½øÈë¼ÓËٵ糡µÄ³õËÙ¶È£¬Çó´Å¸ÐӦǿ¶ÈB2£®
·ÖÎö £¨1£©ab¸Ë×öÔÈËÙÖ±ÏßÔ˶¯¹ý³ÌÖУ¬ÍâÁ¦FÓë°²ÅàÁ¦¶þÁ¦Æ½ºâ£¬ÍƵ¼³ö°²ÅàÁ¦±í´ïʽ£¬¼´¿ÉÇóµÃÍâÁ¦µÄ´óС£¬ÓÉP=FvÇó³ö¹¦ÂÊ£®
£¨2£©¸ù¾ÝÅ·Ä·¶¨ÂÉÇó³ö¼ÓËٵ糡µÄµçѹ£¬Óɶ¯Äܶ¨ÀíÇó³ö¦ÁÁ£×Ó½øÈë´Å³¡µÄËÙ¶È£®Èô¦ÁÁ£×ÓÓëԲͲ±ÚÅöײ5´ÎºóÇ¡ÓÖ´Óa¿×±³ÀëÔ²ÐÄÉä³ö£¬ÔòÁ£×ÓÓëԲͲµÄÅöײµãºÍaµã½«Ô²Í²6µÈ·Ö£¬¸ù¾Ý¼¸ºÎ¹ØÏµÇó³ö¹ì¼£°ë¾¶£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇó´Å¸ÐӦǿ¶ÈB2£®
½â´ð
½â£º£¨1£©µ±ab¸ËÔÈËÙÔ˶¯Ê±£¬FÍâ=FB ¢Ù
FB=B1IL ¢Ú
$I=\frac{E}{{{R_1}+{R_2}}}$ ¢Û
E=B1L v ¢Ü
P=FÍâv ¢Ý
ÁªÁ¢¢Ù¡«¢ÝµÃ$P=\frac{{B_1^2{L^2}{v^2}}}{{{R_1}+{R_2}}}$ ¢Þ
½«ÒÑÖªÌõ¼þ´úÈëÉÏʽµÃP=1.28W
£¨2£©´Ëʱ»ØÂ·µçÁ÷Ç¿¶ÈΪ $I=\frac{E}{{{R_1}+{R_2}}}$
¼ÓËٵ糡µÄµçѹΪ U=IR1
¸ù¾Ý¶¯Äܶ¨Àí£ºq¦ÁU=$\frac{1}{2}{m_¦Á}{v^2}$-0
¦ÁÁ£×Ó´Óa¿×½øÈë´Å³¡µÄËÙ¶È v=$\sqrt{\frac{{2{q_¦Á}U}}{m_¦Á}}$
ÓÉÌâÒâÖª£º¦ÁÁ£×ÓÓëԲͲ±ÚÅöײ5´Îºó´Óa¿×À뿪´Å³¡£¬
Óɼ¸ºÎ¹ØÏµÇóµÃ¡Ïd O b=60¡ã
¹ì¼£°ë¾¶R'=$\frac{{\sqrt{3}}}{3}r$=1.0 m
ÓÖ ${q_¦Á}v{B_2}={m_¦Á}\frac{{v_{\;}^2}}{R'}$
¹ÊµÃ£ºB2=1.6¡Á10-4 T
´ð£º
£¨1£©ab¸Ë×öÔÈËÙÖ±ÏßÔ˶¯¹ý³ÌÖУ¬ÍâÁ¦FµÄ¹¦ÂÊΪ1.28W£»
£¨2£©´Å¸ÐӦǿ¶ÈB2Ϊ1.6¡Á10-4T£®
µãÆÀ ±¾ÌâÊǵç´Å¸ÐÓ¦ÓëÁ¦Ñ§¡¢µç·֪ʶµÄ×ۺϣ¬Çó½â°²ÅàÁ¦£¬»³ö´Å³¡Öй켣£¬Óɼ¸ºÎ֪ʶÇó¹ì¼£°ë¾¶ÊǽâÌâµÄÁ½¸ö¹Ø¼ü£®
| A£® | 1.2v | B£® | 1.5v | C£® | 1.8v | D£® | 1.25v |
| A£® | S±ÕºÏ˲¼ä£¬L2µÆ»ºÂý±äÁÁ£¬L1µÆÁ¢¼´±äÁÁ | |
| B£® | S±ÕºÏ˲¼ä£¬Í¨¹ýÏßȦLµÄµçÁ÷ÓÉÁãÖð½¥Ôö´óµ½I1 | |
| C£® | S¶Ï¿ªË²¼ä£¬Ð¡µÆÅÝL2ÖеĵçÁ÷ÓÉI1Öð½¥¼üλÁ㣬·½ÏòÓëI2Ïàͬ | |
| D£® | S¶Ï¿ªË²¼ä£¬Ð¡µÆÅÄL2ÖеĵçÁ÷ÓÉI1Öð½¥¼õΪÁ㣬·½Ïò²»±ä |
| A£® | ´Ó¶¯ÂÖ×ö˳ʱÕëת¶¯ | |
| B£® | ´Ó¶¯ÂÖ±ßÔµÉϵÄÖʵã½ÇËٶȺÍÖ÷¶¯ÂÖ±ßÔµÉϵÄÖʵã½ÇËÙ¶ÈÏàµÈ | |
| C£® | ´Ó¶¯ÂÖµÄתËÙΪ$\frac{r_1}{r_2}$n | |
| D£® | ´Ó¶¯ÂÖµÄתËÙΪ$\frac{r_2}{r_1}$n |