ÌâÄ¿ÄÚÈÝ
10£®ÈôC¡¢D¼äÎÞµçѹÎ޴ų¡£¬Ôòµç×Ó½«´òÔÚÓ«¹âÆÁÉϵÄOµã£»ÈôÔÚC¡¢D¼äÖ»¼ÓÉϵçѹU2£¬Ôòµç×Ó½«´òÔÚÓ«¹âÆÁÉϵÄPµã£¬ÈôÔÙÔÚÔ²ÐÎÇøÓòÄÚ¼ÓÒ»·½Ïò´¹Ö±ÓÚÖ½ÃæÏòÍâ¡¢´Å¸ÐӦǿ¶ÈΪBµÄÔÈÇ¿´Å³¡£¬Ôòµç×ÓÓÖ´òÔÚÓ«¹âÆÁÉϵÄOµã£®²»¼ÆÖØÁ¦Ó°Ï죮Çó£º
£¨1£©µç×ӵıȺɱí´ïʽ£®
£¨2£©Pµãµ½OµãµÄ¾àÀëh1£®
£¨3£©ÈôC¡¢D¼äÖ»ÓÐÉÏÃæµÄ´Å³¡¶ø³·È¥µç³¡£¬Ôòµç×ÓÓÖ´òÔÚÓ«¹âÆÁÉϵÄQµã£¨Í¼ÖÐδ±ê³ö£©£¬ÇóQµãµ½OµãµÄ¾àÀëh2£®ÒÑÖªtan2a=$\frac{2tan¦Á}{1-ta{n}^{2}¦Á}$£®
·ÖÎö £¨1£©µ±µç×ÓÔÚ¼«°åC¡¢D¼äÊܵ½µç³¡Á¦ÓëÂåÂ××ÈÁ¦Æ½ºâʱ£¬×öÔÈËÙÖ±ÏßÔ˶¯£¬ÊÜÁ¦Æ½ºâ£¬ÓÉÆ½ºâÌõ¼þ¿ÉÇó³öµç×ӵıȺɣ®
£¨2£©¼«°å¼ä½öÓÐÆ«×ªµç³¡Ê±£¬µç×ÓÔڵ糡ÖÐ×öÀàÆ½Å×Ô˶¯£¬½«Ô˶¯·Ö½â³ÉÑØµç³¡Ç¿¶È·½ÏòÓë´¹Ö±µç³¡Ç¿¶È·½Ïò£¬È»ºóÓÉÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½¿ÉÇó³öƫת¾àÀëºÍÀ뿪µç³¡Ê±µÄËÙ¶È£®µç×ÓÀ뿪µç³¡ºó£¬×öÔÈËÙÖ±ÏßÔ˶¯£¬´Ó¶ø¿ÉÒÔÇó³öƫת¾àÀëh1£®
£¨3£©¼«°åC¡¢D¼ä½öÓÐÔÈÇ¿´Å³¡Ê±£¬µç×Ó×öÔÈËÙÔ²ÖÜÔ˶¯£¬Éä³ö´Å³¡ºóµç×Ó×öÔÈËÙÖ±ÏßÔ˶¯£¬»³öµç×ÓÔ˶¯µÄ¹ì¼££¬¸ù¾Ý¼¸ºÎ֪ʶÇó½âh2£®
½â´ð ½â£º£¨1£©¼ÓÉϴų¡ºó£¬µç×ÓËùÊܵ糡Á¦ÓëÂåÂØ×ÈÁ¦ÏàµÈ£¬µç×Ó×öÔÈËÙÖ±ÏßÔ˶¯£¬ÔòÓУº
EevB=eE
ÓÖE=$\frac{{U}_{2}}{d}$
¼´$v=\frac{{U}_{2}}{Bd}$
µç×ÓÔÚAÓëKÖ®¼ä¼ÓËÙ£¬Óж¯Äܶ¨Àí£º$\frac{1}{2}m{v}^{2}-0=e{U}_{1}$
ËùÒÔ£º$\frac{e}{m}=\frac{{U}_{2}^{2}}{2{B}^{2}{d}^{2}{U}_{1}}$
£¨2£©ÈôÔÚÁ½¼«°å¼ä¼ÓÉϵçѹU2
µç×ÓÔÚˮƽ·½Ïò×öÔÈËÙÔ˶¯£¬Í¨¹ý¼«°åËùÐèµÄʱ¼äΪ£º${t}_{1}=\frac{{L}_{1}}{v}$
µç×ÓÔÚÊúÖ±·½Ïò×öÔȼÓËÙÔ˶¯£¬¼ÓËÙ¶ÈΪ£º$a=\frac{e{U}_{2}}{md}$
ÔÚʱ¼ät1ÄÚ´¹Ö±ÓÚ¼«°å·½ÏòÊúÖ±ÏòÏÂÆ«×ªµÄ¾àÀëΪ£º$y=\frac{1}{2}a{t}_{1}^{2}=\frac{{U}_{2}{L}_{1}^{2}}{4d{U}_{1}}=\frac{4{U}_{2}d}{{U}_{1}}$
¸ùé§ÏàËÆÈý½ÇÐΣº$\frac{{h}_{1}}{y}=\frac{\frac{1}{2}{L}_{1}+{L}_{2}}{\frac{1}{2}{L}_{1}}=6$
µÃ£º${h}_{1}=\frac{24{U}_{2}d}{{U}_{1}}$
£¨3£©µç×Ó½øÈë´Å³¡£º$eBv=\frac{m{v}^{2}}{r}$
ÓÉ£¨1£©Öª£º$v=\frac{{U}_{2}}{Bd}$£¬$\frac{e}{m}=\frac{{U}_{2}^{2}}{2{B}^{2}{d}^{2}{U}_{1}}$
µÃµ½£º$r=\frac{2{U}_{1}d}{{U}_{2}}$£¬$tan¦Á=\frac{\frac{1}{2}{L}_{1}}{r}=\frac{{U}_{2}{L}_{1}}{4{U}_{1}d}=\frac{{U}_{2}}{{U}_{1}}$£¬
$tan¦È=\frac{2{U}_{1}{U}_{2}}{{U}_{1}^{2}-{U}_{2}^{2}}$
ÓÉ£º${h}_{2}=£¨\frac{{L}_{1}}{2}+{L}_{2}£©tan¦È$
ËùÒÔ£º${h}_{2}=\frac{24{U}_{1}{U}_{2}d}{{U}_{1}^{2}-{U}_{2}^{2}}$![]()
´ð£º£¨1£©µç×ӵıȺɱí´ïʽΪ£º$\frac{e}{m}=\frac{{U}_{2}^{2}}{2{B}^{2}{d}^{2}{U}_{1}}$£®
£¨2£©Pµãµ½OµãµÄ¾àÀëÊÇ$\frac{24{U}_{2}d}{{U}_{1}}$£®
£¨3£©ÈôC¡¢D¼äÖ»ÓÐÉÏÃæµÄ´Å³¡¶ø³·È¥µç³¡£¬Ôòµç×ÓÓÖ´òÔÚÓ«¹âÆÁÉϵÄQµã£¨Í¼ÖÐδ±ê³ö£©£¬Qµãµ½OµãµÄ¾àÀëÊÇ$\frac{24{U}_{1}{U}_{2}d}{{U}_{1}^{2}-{U}_{2}^{2}}$£®
µãÆÀ ±¾ÌâÊÇ×éºÏ³¡ÎÊÌ⣺¶ÔËÙ¶ÈÑ¡ÔñÆ÷£¬¸ù¾ÝƽºâÌõ¼þÑо¿£»¶ÔÓÚÀàÆ½Å×Ô˶¯µÄ´¦Àí£¬Í¨³£²ÉÓÃÔ˶¯µÄ·Ö½â·¨ÂÉ£º½«Ô˶¯·Ö½â³ÉÏ໥´¹Ö±µÄÁ½·½ÏòÔ˶¯£¬½«Ò»¸ö¸´ÔÓµÄÇúÏßÔ˶¯·Ö½â³ÉÁ½¸ö¼òµ¥µÄÖ±ÏßÔ˶¯£¬²¢ÓÃÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½À´Çó½â£®¶ÔÓÚ´øµçÁ£×ÓÔڴų¡ÖеÄÔ²ÖÜÔ˶¯£¬ÒªÕýÈ·»³ö¹ì¼££¬ÔËÓü¸ºÎ֪ʶ½øÐнâÌ⣮
| A£® | t=0.01sʱÏß¿òÆ½ÃæÓëÖÐÐÔÃæÖØºÏ | |
| B£® | t=0.005sʱÏß¿òµÄ´ÅͨÁ¿±ä»¯ÂÊΪÁã | |
| C£® | Ïß¿ò²úÉúµÄ½»±äµç¶¯ÊÆÓÐЧֵΪ311V | |
| D£® | Ïß¿ò²úÉúµÄ½»±äµç¶¯ÊÆµÄÆµÂÊΪ100Hz |
| A£® | ¢Ú¢Û¢Ü¢Ý | B£® | ¢Ù¢Ú¢ß | C£® | ¢Þ¢ß | D£® | ¢Ù¢Û¢Þ¢ß |
µçѹ±í£¨Á¿³Ìl5V£¬ÄÚ×èÔ¼30k¦¸£©£» µçÁ÷±í£¨Á¿³Ì300¦ÌA£¬ÄÚÔ¼50¦¸£©£»
»¬¶¯±ä×èÆ÷£¨10¦¸£¬1A£©£» µç³Ø×飨µç¶¯ÊÆE=12V£¬ÄÚ×èr=6¦¸£©£»
µ¥µ¶µ¥ÖÀ¿ª¹ØÒ»¸ö¡¢µ¼ÏßÈô¸É£®
Èç±íÊÇËû²âÁ¿Í¨¹ý¹ÜÖе¼µçÒºÖùµÄµçÁ÷¼°Á½¶ËµçѹµÄʵÑéÊý¾Ý£®ÊµÑéÖÐËû»¹ÓÃÓα꿨³ß²âÁ¿Á˲£Á§¹ÜµÄÄÚ¾¶£¬½á¹ûÈçͼ2Ëùʾ
| U/V | 0 | 1.0 | 3.0 | 5.0 | 7.0 | 9.0 | 11.0 |
| I/¦ÌA | 0 | 22 | 65 | 109 | 155 | 175 | 240 |
¸ù¾ÝÒÔÉÏËùÊöÇë»Ø´ðÏÂÃæµÄÎÊÌ⣺
£¨1£©²£Á§¹ÜÄÚ¾¶dµÄ²âÁ¿ÖµÎª3.075cm£»
£¨2£©¸ù¾Ý±íÊý¾ÝÔÚͼ3×ø±êÖÐÒÑÃèµã×÷ͼ£¬¸ù¾ÝͼÏóÇó³öµç×èR=4.6¡Á104¦¸¡¡£¨±£ÁôÁ½Î»ÓÐЧÊý×Ö£©£»
£¨3£©¼ÆËãµ¼µçÈÜÒºµÄµç×èÂʱí´ïʽÊǦÑ=$\frac{¦ÐR{d}^{2}}{4L}$ £¨ÓÃR¡¢d¡¢L±íʾ£©
£¨4£©ÇëÔÚ£¨Í¼1£©Öв¹»³öδÁ¬½ÓµÄµ¼Ïߣ®
| A£® | 168ÀåÃ× | B£® | 56ÀåÃ× | C£® | 42ÀåÃ× | D£® | 24ÀåÃ× | ||||
| E£® | 11.2ÀåÃ× |
| A£® | ²¨µÄÖÜÆÚΪ2s | |
| B£® | x=0´¦µÄÖʵãÔÚt=0µ½t=1sÄÚͨ¹ýµÄ·³ÌΪ40cm | |
| C£® | x=0´¦µÄÖʵãÔÚt=$\frac{1}{4}$sÊ±ÑØyÖáÕýÏòÔ˶¯ | |
| D£® | x=3m´¦µÄÖʵãÔÚt=$\frac{1}{4}$sʱ¼ÓËÙ¶È×î´ó | |
| E£® | ÕâÁв¨ÓöÒÔ1mµÄÕϰÎïʱһ¶¨ÄÜ·¢ÉúÃ÷ÏÔµÄÑÜÉäÏÖÏó |
| A£® | v2 | B£® | 2v2-v1 | C£® | $\sqrt{\frac{{{v}_{2}}^{2}+{{v}_{1}}^{2}}{2}}$ | D£® | $\sqrt{2{{v}_{2}}^{2}-{{v}_{1}}^{2}}$ |
| A£® | F1£¾F2£¬µ¯»É³¤¶È½«±ä³¤ | B£® | F1£¾F2£¬µ¯»É³¤¶È½«±ä¶Ì | ||
| C£® | F1£¼F2£¬µ¯»É³¤¶È½«±ä³¤ | D£® | F1£¼F2£¬µ¯»É³¤¶È½«±ä¶Ì |
| A£® | СÇòµÄÖÊÁ¿Îª$\frac{aR}{b}$ | |
| B£® | µ±µØµÄÖØÁ¦¼ÓËÙ¶È´óСΪ$\frac{R}{b}$ | |
| C£® | v2=cʱ£¬¸Ë¶ÔСÇòµÄµ¯Á¦·½ÏòÏòÏ | |
| D£® | v2=2bʱ£¬Ð¡ÇòÊܵ½µÄµ¯Á¦ÓëÖØÁ¦´óСÏàµÈ |