ÌâÄ¿ÄÚÈÝ
3£®£¨1£©¹ØÓڿɼû¹â£¬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇAC
A£®¿É¼û¹âÖеĺì¹â±È×ϹâµÄƵÂʵÍ
B£®¿É¼û¹â²»ÄÜÔÚÕæ¿ÕÖд«²¥
C£®¿É¼û¹â²¨³¤Ô½³¤£¬Ô½ÈÝÒ×·¢ÉúÑÜÉä
D£®¿É¼û¹âÄÜ·¢Éú¹âµÄ¸ÉÉæºÍÑÜÉäÏÖÏó£¬ËµÃ÷¹âÊǺᲨ
£¨2£©Õæ¿ÕÖÐÒ»Êø²¨³¤Îª6¡Á10-7mµÄ¿É¼û¹â£¬ÆµÂÊΪ5¡Á1014Hz£¬ÒÑÖª¹âÔÚÕæ¿ÕÖеÄËÙ¶ÈΪ3¡Á108m/s£®¸Ã¹â½øÈëË®ÖÐºó£¬Æä²¨³¤ÓëÕæ¿ÕÖеÄÏà±È±ä±ä¶Ì£¨Ñ¡Ìî¡°³¤¡±»ò¡°¶Ì¡±£©£®
£¨3£©¿É¼û¹âͨÐÅÊÇÀûÓÃLEDµÆµÄ¹âÏßʵÏÖÉÏÍøµÄÐÂÐ͸ßËÙÊý¾Ý´«Êä¼¼Êõ£®ÈçͼËùʾ£¬ABCDÊÇLEDÉÁ¹âµÆµÄÔ²ÖùÐηâ×°²£Á§Ì壬Æäºá½ØÃæµÄÖ±¾¶AB=d£¬ºñ¶ÈAD=$\frac{\sqrt{3}}{2}$d£¬LEDµÆ£¨¿ÉÊÓΪµã¹âÔ´£©¹Ì¶¨ÔÚ²£Á§ÌåCDÃæµÄÔ²ÐÄO£¬²£Á§ÌåµÄÕÛÉäÂÊΪ$\sqrt{2}$£¬¹âÔÚÕæ¿ÕÖеĴ«²¥ËÙ¶ÈΪc£®Çó£º
¢Ù¹âÔÚ²£Á§ÌåÖд«²¥µÄËÙ¶È£»
¢Ú¹âÏßOAÔÚABÃæ·¢ÉúÕÛÉäʱµÄÕÛÉä½Ç£®
·ÖÎö £¨1£©¿É¼û¹âÖкì¹âµÄƵÂÊ×îµÍ£¬×ϹâµÄƵÂÊ×î¸ß£®ÔÚÕæ¿ÕÖи÷ÖÖÉ«¹âµÄ´«²¥ËÙ¶ÈÏàͬ£®²¨³¤Ô½³¤£¬Ô½ÈÝÒ×·¢ÉúÑÜÉ䣮¹âµÄÆ«ÕñÏÖÏó˵Ã÷¹âÊǺᲨ£®
£¨2£©Õæ¿ÕÖйâËÙΪc=3¡Á108m/s£¬Óɲ¨ËÙ¹«Ê½c=¦ËfÇó¹âµÄƵÂÊ£®¹â½øÈëË®ÖÐºó£¬ÆµÂʲ»±ä£¬²¨ËÙ±äС£¬ÓÉv=¦Ëf·ÖÎö²¨³¤µÄ±ä»¯£®
£¨3£©¢Ù¸ù¾Ýv=$\frac{c}{n}$Çó³ö¹âÔÚ½éÖÊÖд«²¥µÄËÙ¶È´óС£®¢Ú¸ù¾ÝÈëÉä½ÇµÄ´óС£¬½áºÏ²£Á§µÄÕÛÉäÂÊ£¬Í¨¹ýÕÛÉ䶨Âɼ´¿ÉÇó³ö£®
½â´ð ½â£º£¨1£©A¡¢¿É¼û¹âÖеĺì¹â±È×ϹâµÄƵÂʵͣ®¹ÊAÕýÈ·£®
B¡¢¿É¼û¹âÄÜÔÚÕæ¿ÕÖд«²¥£¬¹ÊB´íÎó£®
C¡¢¿É¼û¹â²¨³¤Ô½³¤£¬²¨¶¯ÐÔ³¬Ç¿£¬Ô½ÈÝÒ×·¢ÉúÑÜÉ䣬¹ÊCÕýÈ·£®
D¡¢¿É¼û¹âÄÜ·¢Éú¹âµÄ¸ÉÉæºÍÑÜÉäÏÖÏ󣬲»ÄÜ˵Ã÷¹âÊǺᲨ£¬Ö»ÓйâµÄÆ«ÕñÏÖÏó˵Ã÷¹âÊǺᲨ£®¹ÊD´íÎó£®
¹ÊÑ¡£ºAC
£¨2£©ÒÑÖª ¦Ë=6¡Á10-7m£¬ÓÉc=¦ËfµÃ£ºf=$\frac{c}{¦Ë}$=$\frac{3¡Á1{0}^{8}}{6¡Á1{0}^{-7}}$=5¡Á1014Hz
¹â½øÈëË®ÖÐºó£¬ÆµÂʲ»±ä£¬²¨ËÙ±äС£¬ÓÉv=¦Ëf·ÖÎöÖª£¬²¨³¤±ä¶Ì£®
£¨3£©¢Ù¸ù¾Ýv=$\frac{c}{n}$µÃ¹âÔÚ²£Á§ÌåÖд«²¥µÄËÙ¶ÈΪ£º
v=$\frac{3¡Á1{0}^{8}}{\sqrt{2}}$=$\frac{3\sqrt{2}}{2}$¡Á108m/s£®
¢ÚÉè¹âÏßOAÔÚABÃæ·¢ÉúÕÛÉäʱµÄÈëÉä½ÇΪi£¬ÕÛÉä½ÇΪr£®ÓÉÌâͼ¿ÉÖª£ºOD=$\frac{1}{2}$AB=$\frac{1}{2}$d
ËùÒÔÈëÉä½ÇµÄÕýÇУºtani=$\frac{OD}{AD}$=$\frac{\frac{1}{2}d}{\frac{\sqrt{3}}{2}d}$=$\frac{\sqrt{3}}{3}$
ËùÒÔ£ºr=30¡ã
¸ù¾ÝÕÛÉ䶨ÂÉÖª£ºn=$\frac{sinr}{sini}$
ËùÒÔ£ºsinr=n•sini=$\sqrt{2}$¡Ásin30¡ã=$\frac{\sqrt{2}}{2}$
ËùÒÔÕÛÉä½Ç£ºr=45¡ã£®
¹Ê´ð°¸Îª£º£¨1£©AC£»£¨2£©5¡Á1014£¬±ä¶Ì£»£¨3£©¢Ù¹âÔÚ²£Á§ÌåÖд«²¥µÄËÙ¶ÈÊÇ$\frac{3\sqrt{2}}{2}$¡Á108m/s£»¢Ú¹âÏßOAÔÚABÃæ·¢ÉúÕÛÉäʱµÄÕÛÉä½ÇÊÇ45¡ã£®
µãÆÀ ¸ÃÌâÊÇÎïÀí¹âѧºÍ¼¸ºÎ¹âѧµÄÎÊÌ⣬½â¾ö±¾ÌâµÄ¹Ø¼üÒªÕÆÎտɼû¹âƵÂÊ¡¢²¨³¤µÄ¹ØÏµ£¬ÕÆÎÕ¹âµÄÕÛÉ䶨ÂÉn=$\frac{sini}{sinr}$£¬ÒÔ¼°n=$\frac{c}{n}$£¬²¢ÄÜÁé»îÓ¦Óã®
| A£® | £¨c£©ºÍ£¨d£©µÄÇé¿öÏ£¬µ¼ÏßËùÊܵ½µÄ°²ÅàÁ¦¶¼´óÓÚ£¨a£©µÄÇé¿ö | |
| B£® | £¨b£©µÄÇé¿öÏ£¬µ¼Ïß²»ÊÜÁ¦ | |
| C£® | £¨b£©¡¢£¨c£©µÄÇé¿öÏ£¬µ¼Ïß¶¼²»ÊÜÁ¦ | |
| D£® | £¨a£©¡¢£¨b£©¡¢£¨d£©Çé¿öÏ£¬µ¼ÏßËùÊܰ²ÅàÁ¦´óС¶¼ÏàµÈ |
| A£® | ½ðÊô°ô¿ªÊ¼Ô˶¯Ê±µÄ¼ÓËÙ¶È´óСΪ¦Á=gsin¦Á | |
| B£® | ½ðÊô°ôÊܵ½µÄ°²ÅàÁ¦·½ÏòƽÐÐÐ±ÃæÏòÉÏ | |
| C£® | ½ðÊô°ôÑØµ¼¹ìÏ»¬¾àÀëΪsµÄ¹ý³ÌÖУ¬µç×èRÉϲúÉúµÄÈÈÁ¿Îª$Q=\frac{mR£¨gs-v_m^2£©}{2£¨R+r£©}$ | |
| D£® | ½ðÊô°ôÑØµ¼¹ìÏ»¬¾àÀëΪsµÄ¹ý³ÌÖÐÆä¼ÓËÙ¶ÈÖð½¥±äС |
| A£® | ´Å³¡¶Ôͨµçµ¼ÏßµÄ×÷ÓÃÁ¦·½ÏòÒ»¶¨Óë´Å³¡·½ÏòÏàͬ | |
| B£® | ´Å³¡¶ÔÔ˶¯µçºÉµÄ×÷ÓÃÁ¦·½ÏòÒ»¶¨ÓëËÙ¶È·½Ïò´¹Ö± | |
| C£® | ´øµçÁ£×ÓÖ»ÊÜÂåÂ××ÈÁ¦×÷ÓÃʱ£¬Æä¶¯Äܲ»±ä£¬ËٶȲ»±ä | |
| D£® | µçºÉÔڴų¡Öв»¿ÉÄÜ×öÔÈËÙÖ±ÏßÔ˶¯ |
| A£® | Q2´ø¸ºµçÇÒµçºÉÁ¿Ð¡ÓÚQ1 | |
| B£® | bµãµÄ³¡Ç¿Ò»¶¨ÎªÁã | |
| C£® | aµãµÄµçÊÆ±ÈbµãµÄµçÊÆ¸ß | |
| D£® | Á£×ÓÔÚaµãµÄµçÊÆÄܱÈbµãµÄµçÊÆÄÜ´ó |