ÌâÄ¿ÄÚÈÝ
Èçͼ£¨a£©Ëùʾ£¬¹â»¬µÄƽÐг¤Ö±½ðÊôµ¼¹ìÖÃÓÚË®Æ½ÃæÄÚ£¬¼ä¾àΪL¡¢µ¼¹ì×ó¶Ë½ÓÓÐ×èֵΪRµÄµç×裬ÖÊÁ¿ÎªmµÄµ¼Ìå°ô´¹Ö±¿ç½ÓÔÚµ¼¹ìÉÏ£®µ¼¹ìºÍµ¼Ìå°ôµÄµç×è¾ù²»¼Æ£¬ÇÒ½Ó´¥Á¼ºÃ£®ÔÚµ¼¹ìÆ½ÃæÉÏÓÐÒ»¾ØÐÎÇøÓòÄÚ´æÔÚ×ÅÊúÖ±ÏòϵÄÔÈÇ¿´Å³¡£¬´Å¸ÐӦǿ¶È´óСΪB£®¿ªÊ¼Ê±£¬µ¼Ìå°ô¾²Ö¹Óڴų¡ÇøÓòµÄÓÒ¶Ë£¬µ±´Å³¡ÒÔËÙ¶Èv1ÔÈËÙÏòÓÒÒÆ¶¯Ê±£¬µ¼Ìå°ôËæÖ®¿ªÊ¼Ô˶¯£¬Í¬Ê±Êܵ½Ë®Æ½Ïò×ó¡¢´óСΪfµÄºã¶¨×èÁ¦£¬²¢ºÜ¿ì´ïµ½ºã¶¨ËÙ¶È£¬´Ëʱµ¼Ìå°ôÈÔ´¦Óڴų¡ÇøÓòÄÚ£®
£¨1£©Çóµ¼Ìå°ôËù´ïµ½µÄºã¶¨ËÙ¶Èv2£»
£¨2£©ÎªÊ¹µ¼Ìå°ôÄÜËæ´Å³¡Ô˶¯£¬×èÁ¦×î´ó²»Äܳ¬¹ý¶àÉÙ£¿
£¨3£©µ¼Ìå°ôÒԺ㶨ËÙ¶ÈÔ˶¯Ê±£¬µ¥Î»Ê±¼äÄÚ¿Ë·þ×èÁ¦Ëù×öµÄ¹¦ºÍµç·ÖÐÏûºÄµÄµç¹¦Âʸ÷Ϊ¶à´ó£¿
£¨4£©Èôt=0ʱ´Å³¡Óɾ²Ö¹¿ªÊ¼Ë®Æ½ÏòÓÒ×öÔȼÓËÙÖ±ÏßÔ˶¯£¬¾¹ý½Ï¶Ìʱ¼äºó£¬µ¼Ìå°ôÒ²×öÔȼÓËÙÖ±ÏßÔ˶¯£¬Æäv-t¹ØÏµÈçͼ£¨b£©Ëùʾ£¬ÒÑÖªÔÚʱ¿Ìtµ¼Ìå°ô˲ʱËÙ¶È´óСΪvt£¬Çóµ¼Ìå°ô×öÔȼÓËÙÖ±ÏßÔ˶¯Ê±µÄ¼ÓËÙ¶È´óС£®
£¨1£©Çóµ¼Ìå°ôËù´ïµ½µÄºã¶¨ËÙ¶Èv2£»
£¨2£©ÎªÊ¹µ¼Ìå°ôÄÜËæ´Å³¡Ô˶¯£¬×èÁ¦×î´ó²»Äܳ¬¹ý¶àÉÙ£¿
£¨3£©µ¼Ìå°ôÒԺ㶨ËÙ¶ÈÔ˶¯Ê±£¬µ¥Î»Ê±¼äÄÚ¿Ë·þ×èÁ¦Ëù×öµÄ¹¦ºÍµç·ÖÐÏûºÄµÄµç¹¦Âʸ÷Ϊ¶à´ó£¿
£¨4£©Èôt=0ʱ´Å³¡Óɾ²Ö¹¿ªÊ¼Ë®Æ½ÏòÓÒ×öÔȼÓËÙÖ±ÏßÔ˶¯£¬¾¹ý½Ï¶Ìʱ¼äºó£¬µ¼Ìå°ôÒ²×öÔȼÓËÙÖ±ÏßÔ˶¯£¬Æäv-t¹ØÏµÈçͼ£¨b£©Ëùʾ£¬ÒÑÖªÔÚʱ¿Ìtµ¼Ìå°ô˲ʱËÙ¶È´óСΪvt£¬Çóµ¼Ìå°ô×öÔȼÓËÙÖ±ÏßÔ˶¯Ê±µÄ¼ÓËÙ¶È´óС£®
£¨1£©Óеç´Å¸ÐÓ¦¶¨ÂÉ£¬µÃ
E=BL£¨v1-v2£©
±ÕºÏµç·ŷķ¶¨ÂÉ
I=
µ¼Ìå°ôËùÊܰ²ÅàÁ¦
F=BIL=
ËٶȺ㶨ʱÓÐ
=f
¿ÉµÃv2=v1-
£¨2£©ÎªÊ¹µ¼Ìå°ôÄÜËæ´Å³¡Ô˶¯£¬×èÁ¦×î´ó²»Äܳ¬¹ýËùÊܵÄ×î´ó°²ÅàÁ¦£¬¼´µ¼Ìå°ô²»¶¯Ê±£¬°²ÅàÁ¦×î´óΪ
fm=
£¨3£©¸ù¾ÝÄÜÁ¿Êغ㣬µ¥Î»Ê±¼äÄÚ¿Ë·þ×èÁ¦Ëù×öµÄ¹¦£¬¼´Ä¦²ÁÁ¦µÄ¹¦ÂÊ
P=FV=f(v1-
)
µç·ÖÐÏûºÄµÄµç¹¦ P=
=
=
£¨4£©Òò
-f=maµ¼Ìå°ôÒª×öÔȼÓËÙÔ˶¯£¬±ØÓÐv1-v2Ϊ³£Êý£¬ÉèΪ¡÷v£¬Ôò£º
a=
Ôò
-f=ma
¿É½âµÃ
a=
´ð£º£¨1£©Çóµ¼Ìå°ôËù´ïµ½µÄºã¶¨ËÙ¶Èv2=v1-
£»
£¨2£©ÎªÊ¹µ¼Ìå°ôÄÜËæ´Å³¡Ô˶¯£¬×èÁ¦×î´ó²»Äܳ¬¹ý
£¨3£©µ¼Ìå°ôÒԺ㶨ËÙ¶ÈÔ˶¯Ê±£¬µ¥Î»Ê±¼äÄÚ¿Ë·þ×èÁ¦Ëù×öµÄ¹¦ºÍµç·ÖÐÏûºÄµÄµç¹¦Âʸ÷Ϊf(v1-
)£¬
£¨4£©µ¼Ìå°ô×öÔȼÓËÙÖ±ÏßÔ˶¯Ê±µÄ¼ÓËÙ¶È´óСΪa=
£®
E=BL£¨v1-v2£©
±ÕºÏµç·ŷķ¶¨ÂÉ
I=
| E |
| R |
µ¼Ìå°ôËùÊܰ²ÅàÁ¦
F=BIL=
| B2L2(v1-v2) |
| R |
ËٶȺ㶨ʱÓÐ
| B2L2(v1-v2) |
| R |
¿ÉµÃv2=v1-
| fR |
| B2L2 |
£¨2£©ÎªÊ¹µ¼Ìå°ôÄÜËæ´Å³¡Ô˶¯£¬×èÁ¦×î´ó²»Äܳ¬¹ýËùÊܵÄ×î´ó°²ÅàÁ¦£¬¼´µ¼Ìå°ô²»¶¯Ê±£¬°²ÅàÁ¦×î´óΪ
fm=
| B2L2v1 |
| R |
£¨3£©¸ù¾ÝÄÜÁ¿Êغ㣬µ¥Î»Ê±¼äÄÚ¿Ë·þ×èÁ¦Ëù×öµÄ¹¦£¬¼´Ä¦²ÁÁ¦µÄ¹¦ÂÊ
P=FV=f(v1-
| fR |
| B2L2 |
µç·ÖÐÏûºÄµÄµç¹¦ P=
| E2 |
| R |
| B2L2(v1-v2)2 |
| R |
| f2R |
| B2L2 |
£¨4£©Òò
| B2L2(v1-v2) |
| R |
a=
| vt+¡÷v |
| t |
Ôò
| B2L2(at-v2) |
| R |
¿É½âµÃ
a=
| B2L2vt+fR |
| B2L2t-mR |
´ð£º£¨1£©Çóµ¼Ìå°ôËù´ïµ½µÄºã¶¨ËÙ¶Èv2=v1-
| fR |
| B2L2 |
£¨2£©ÎªÊ¹µ¼Ìå°ôÄÜËæ´Å³¡Ô˶¯£¬×èÁ¦×î´ó²»Äܳ¬¹ý
| B2L2v1 |
| R |
£¨3£©µ¼Ìå°ôÒԺ㶨ËÙ¶ÈÔ˶¯Ê±£¬µ¥Î»Ê±¼äÄÚ¿Ë·þ×èÁ¦Ëù×öµÄ¹¦ºÍµç·ÖÐÏûºÄµÄµç¹¦Âʸ÷Ϊf(v1-
| fR |
| B2L2 |
| f2R |
| B2L2 |
£¨4£©µ¼Ìå°ô×öÔȼÓËÙÖ±ÏßÔ˶¯Ê±µÄ¼ÓËÙ¶È´óСΪa=
| B2L2vt+fR |
| B2L2t-mR |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿