题目内容
14.如图11所示,半径R=0.40m的光滑半圆环轨道处于竖直平面内,半圆环与粗糙的水平地面相切于圆环的端点A。一质量m=0.10kg的小球,以初速度υ0=7.0m/s在水平地面上向左作加速度a=3.0m/s2的匀减速直线运动,运动4.0m后,冲上竖直半圆环,最后小球落在C点。求A、C间的距离(取重力加速度g=10m/s2).![]()
14.答案:
解析:匀减速运动过程中,有:
υA2-υ02=-2as ①
恰好作圆周运动时物体在最高点B满足:
mg=m![]()
mB1=2m/s ②
假设物体能到达圆环的最高点B,由机械能守恒:
③
联立①③可得
υB=3m/s
因为υB>υB1,所以小球能通过最高点B。
小球从B点作平抛运动,有:
2R=
gt2 ④
SAC=υB·t ⑤
由④⑤得:
SAC=1.2 m
练习册系列答案
相关题目