题目内容

如图所示一水平圆盘绕过圆心的竖直轴转动,圆盘边缘有一质量m=1.0kg的小滑块。当圆盘转动的角速度达到某一数值时,滑块从圆盘边缘A点滑落,经光滑的过渡圆管进入轨道ABC。已知AB段斜面倾角为α=53°,BC段斜面倾角为β=37°,滑块与圆盘及斜面间的动摩擦因数均为μ=0.5,A点离B点所在水平面的高度h=1.2m。滑块在运动过程中始终未脱离轨道,不计在过渡圆管处和B点的机械能损失,最大静摩擦力近似等于滑动摩擦力,取g=10m/s2。求:

(1)若圆盘半径R=0.2m,滑块从圆盘上滑落时圆盘的角速度ω

(2)取圆盘所在平面为零势能面,滑块到达B点时的机械能EB

(3)滑块经过B点后0.6s内发生的位移xBC

解:

(1)滑块在圆盘上做圆周运动时,受盘面静摩擦力作用,根据牛顿第二定律得:

                                          ………………①

滑落时:                                      ………………②

联解①②得:ω=5rad/s                                  ………………③

(2)滑块在离开A点滑落时的速度:

                                              ………………④

滑块从AB的运动过程,由动能定理得:

   ………………⑤

滑块在B点时的机械能:

                                   ………………⑥

联解④⑤⑥得:                             ………………⑦

(3)设滑块沿BC段向上做匀变速运动经过时间t1到达最高点后下滑,有:

上滑时:

           ………………⑧

                                   ………………⑨

下滑时:

     ………………⑩

                                        ………………⑪

联解④⑤⑧⑨⑩⑪得:

                                        ………………⑫

评分参考意见:本题满分12分,其中①~⑫式各1分;若有其他合理解法且答案正确,可同样给分。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网