ÌâÄ¿ÄÚÈÝ

8£®ÈçͼËùʾ£¬ÔÚxOyÆ½ÃæµÚ¢ñÏóÏÞ´æÔÚÑØyÖáÕý·½ÏòµÄÔÈÇ¿µç³¡£¬µç³¡Ç¿¶ÈΪE£®Ò»¸öµç×ÓÑØxÖáÕý·½ÏòµÄ³õËÙ¶Èv0´ÓyÖáÉϵÄAµã½øÈëÔÈÇ¿´Å³¡£¬´ÓCµã½øÈëµÚ¢ôÏóÏÞ£®ÒÑÖªAµã×ø±êΪ£¨0£¬$\frac{3}{2}$b£©£¬CµÄ×ø±êΪ£¨$\sqrt{3}$b£¬0£©£®
£¨1£©Çóµç×ӵıȺÉ$\frac{e}{m}$£»
£¨2£©ÔÚµÚ¢ôÏóÏ޵ĺÏÊÊλÖüÓÉÏÒ»¸ö´Å¸ÐӦǿ¶ÈΪB0µÄ¾ØÐÎÔÈÇ¿´Å³¡ÇøÓò£¬Ê¹µÃ´ÓCµã½øÈëµÚ¢ôÏóÏ޵ĵç×Óͨ¹ýËù¼ÓµÄÔÈÇ¿´Å³¡Ç¡ºÃÑØ×ÅÆ½ÐÐÓÚxÖáÕý·½ÏòÉä³ö£®Ç󣺴ŸÐӦǿ¶ÈµÄ·½Ïò£¿µç×ÓÔÚÔÈÇ¿´Å³¡ÖÐÔ˶¯µÄʱ¼ätºÍËù¼Ó´Å³¡ÇøÓòµÄ×îС¾ØÐÎÃæ»ýs£¿

·ÖÎö £¨1£©µç×ÓÔڵ糡ÖÐ×öÀàËÆÆ½Å×Ô˶¯£¬¸ù¾ÝÀàËÆÆ½Å×Ô˶¯µÄ·ÖÔ˶¯¹«Ê½ÁÐʽÇó½âµç×ӵıȺÉ$\frac{e}{m}$£»
£¨2£©µç×Ó½øÈëµÚËÄÏóÏÞºóÏÖÔÚÔÈËÙÔ˶¯ºó×öÔÈËÙÔ²ÖÜÔ˶¯£¬»­³ö¹ì¼££¬ÕÒµ½Ô²ÐÄ£¬¸ù¾Ý¼¸ºÎ¹ØÏµÁÐʽÇó½â³ö°ë¾¶£»È»ºó¸ù¾ÝÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦ÁÐʽÇó½â´Å¸ÐӦǿ¶È£¬×îºó¸ù¾Ý¹ì¼£µÃµ½´Å³¡×îÐ¡Ãæ»ý£®

½â´ð ½â£º£¨1£©µç×Ó×öÀàËÆÆ½Å×Ô˶¯£¬Ë®Æ½·½Ïò£º${v}_{0}t=\sqrt{3}b$
ÊúÖ±·½Ïò£º$a=\frac{eE}{m}$£¬$\frac{1}{2}a{t}^{2}=\frac{3}{2}b$
½âµÃ£º$\frac{e}{m}=\frac{{v}_{0}^{2}}{Eb}$
£¨2£©¾­¹ýCµãʱ£º${v}_{y}=at=\frac{eE}{m}•\frac{\sqrt{3}b}{{v}_{0}}=\sqrt{3}{v}_{0}$
ËÙ¶È´óСΪ£º${v}_{C}=\sqrt{{v}_{0}^{2}+£¨at£©^{2}}$=2v0
Óëˮƽ·½Ïò¼Ð½ÇΪ£º$¦È=arctan\frac{{v}_{y}}{{v}_{0}}=arctan\frac{\sqrt{3}{v}_{0}}{{v}_{0}}¨T60¡ã$
µç×Ó½øÈëµÚËÄÏóÏÞÏÈ×öÔÈËÙÖ±ÏßÔ˶¯£¬½øÈë´Å³¡ºó×öÔÈËÙÔ²ÖÜÔ˶¯£¬µç×ÓÏòÓÒÆ«×ª£¬ÓÉ×óÊÖ¶¨Ôò¿ÉÖª£¬´Å³¡µÄ·½ÏòÏòÍ⣮µç×ÓÀûÓôų¡ËÙ¶ÈÆ«×ª½ÇΪ60¡ã£®
µç×ÓÔ˶¯µÄÖÜÆÚ£º$T=\frac{2¦Ðm}{e{B}_{0}}=\frac{2¦ÐEb}{{B}_{0}{v}_{0}^{2}}$
µç×ÓÔڴų¡ÖÐÔ˶¯µÄʱ¼ä£º$t¡ä=\frac{60¡ã}{360¡ã}•T=\frac{1}{6}T$=$\frac{¦ÐEb}{3{B}_{0}{v}_{0}^{2}}$
Óɼ¸ºÎ¹ØÏµ¿ÉµÃËù¼Ó´Å³¡ÇøÓòµÄ×îС¾ØÐÎÃæ»ý¶ÔÓ¦µÄ´Å³¡µÄ¾ØÐδų¡µÄ¶Ô½ÇÏßµÈÓÚµç×ӵĹìµÀµÄ°ë¾¶£¬ÓÉÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦µÃ£º$e{v}_{c}{B}_{0}=\frac{m{v}_{c}^{2}}{r}$£¬
ËùÒÔ£º$r=\frac{m{v}_{c}}{e{B}_{0}}=\frac{2m{v}_{0}}{e{B}_{0}}$=$\frac{2Eb}{{B}_{0}{v}_{0}}$
¾ØÐεij¤¶È£º${L}_{1}=r•sin60¡ã=\frac{\sqrt{3}}{2}r=\frac{\sqrt{3}Eb}{{B}_{0}{v}_{0}}$
¾ØÐεĿí¶È£º${L}_{2}=r£¨1-cos60¡ã£©=\frac{1}{2}r=\frac{Eb}{{B}_{0}{v}_{0}}$
Ëù¼Ó´Å³¡ÇøÓòµÄ×îС¾ØÐÎÃæ»ýΪ£ºSm=L1•L2=$\frac{\sqrt{3}{E}^{2}{b}^{2}}{{B}_{0}^{2}{v}_{0}^{2}}$
´ð£º£¨1£©µç×ӵıȺÉ$\frac{e}{m}=\frac{{v}_{0}^{2}}{Eb}$£»
£¨2£©´Å¸ÐӦǿ¶ÈµÄ·½ÏòÏòÍ⣬µç×ÓÔÚÔÈÇ¿´Å³¡ÖÐÔ˶¯µÄʱ¼ätÊÇ$\frac{¦ÐEb}{3{B}_{0}{v}_{0}^{2}}$£¬Ëù¼Ó´Å³¡ÇøÓòµÄ×îС¾ØÐÎÃæ»ýÊÇ$\frac{\sqrt{3}{E}^{2}{b}^{2}}{{B}_{0}^{2}{v}_{0}^{2}}$£®

µãÆÀ ±¾Ìâ¹Ø¼üÊÇÕÒ³öµç×ÓµÄÔ˶¯¹æÂÉ£¬»­³ö¹ì¼£Í¼£¬È»ºó·Ö½×¶Î¸ù¾ÝÀàËÆÆ½Å×Ô˶¯µÄ·ÖÔ˶¯¹«Ê½ºÍÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦ÁÐʽÇó½â£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
9£®Ä³Ð©ÊµÑéÆ÷²ÄµÄºËÐIJ¿¼þÔËÓÃÁËµçÆ«×ªºÍ´ÅƫתԭÀí£¬ÆäºËÐĽṹԭÀí¿É¼ò»¯ÎªÈçͼ¼×Ëùʾ£ºÊúÖ±·½ÏòµÄAB¡¢CDÇøÓòÄÚÓÐÊúÖ±·½ÏòµÄÔÈÇ¿µç³¡£¬CDµÄÓÒ²àÓÐÒ»¸öÓëCDÏàÇÐÓÚMµãµÄÔ²ÐÎÇøÓò¢ò£¬ÔÚ¢òÇøÓòÖÐÓÐÒ»¸öÔ²ÐÄΪO1¡¢°ë¾¶ÎªR0µÄ½ÏСԲÐÎÇøÓò¢ñ£¬¿ªÊ¼Ê±£¬Õû¸öÔ²ÐÎÇøÓò¢ò´æÔÚ´¹Ö±ÓÚÆ½ÃæµÄÔÈÇ¿´Å³¡£¬ÒÑÖªOP¼ä¾àÀëΪd£¬Á£×ÓÖÊÁ¿Îªm£¬µçÁ¿Îªq£¬Á£×Ó×ÔÉíÖØÁ¦ºöÂÔ²»¼Æ£®¹¤×÷ǰ£¬Ïȵ÷½Ú×°Öã¬Ê¹´øµçÁ£×Ó×ÔOµãÒÔˮƽ³õËÙ¶Èv0Õý¶ÔPµã½øÈë¸Ãµç³¡ºó£¬´ÓMµã·ÉÀëCD±ß½çʱËÙ¶ÈΪ2v0£¬ÔÙ¾­´Å³¡Æ«×ªºóÓÖ´ÓNµã´¹Ö±ÓÚCD±ß½ç»Øµ½µç³¡ÇøÓò£®²¢Ç¡ÄÜ·µ»ØOµã£®¹¤×÷ʱ£¬µ÷ÕûÐ¡Ô²ÇøÓò¢ñÖÁÊʵ±µÄλÖã¬Ê¹Á£×ÓÇ¡ºÃ´ÓСԲ´Å³¡µÄAµãÑØyÖḺ·½ÏòÉäÈë´Å³¡ÇøÓò¢ñ£¨¢ñÇøÓòÈçͼ£¨ÒÒ£©Ëùʾ£©£¬Á£×Ó´ÓAµãÈëÉäµÄͬʱ£¬¢ñÇøÓòÍâ´Å³¡µÄ´Å¸ÐӦǿ¶È·½Ïò²»±ä¶ø´óС±äΪԭÀ´µÄ4±¶£¬ÇøÓò¢ñÄڴų¡µÄ´Å¸ÐӦǿ¶ÈÒ²·¢Éú¸Ä±ä£¬´Ëºó±£³Ö²»±ä£¬Á£×ÓµÚÒ»´Î³öÇøÓò¢ñʱ¾­¹ýxÖáÉϵÄGµã£¬·½ÏòÑØxÖáÕý·½Ïò£¬Á£×Ó¾­¹ýÇøÓò¢ñÍâºó´ÓQµãµÚ¶þ´ÎÉäÈëÇøÓò¢ñÄÚ£¬´ËºóÁ£×ÓʼÖÕÔڴų¡ÇøÓòÄÚÔ˶¯¶ø²»ÔÙ·µ»Øµç³¡£¬ÒÑÖªO1QÓëxÖáÕý·½Ïò³É60¡ã£¬²»¿¼ÂǴų¡±ä»¯²úÉúµÄÓ°Ï죬ÊÔÇó£º
£¨1£©P¡¢MÁ½µã¼äµÄ¾àÀ룻
£¨2£©¹¤×÷ǰÕû¸öÔ²ÐÎÇøÓò¢òÖеĴŸÐӦǿ¶ÈBµÄ´óС¼°ÇøÓò¢òµÄ°ë¾¶R¡ä£»
£¨3£©¹¤×÷Ê±ÇøÓò¢ñÖеĴŸÐӦǿ¶ÈB1µÄ´óС£»
£¨4£©¹¤×÷ʱÁ£×Ó´ÓAµãÑØyÖḺ·½ÏòÉäÈëºóÖÁÔÙ´ÎÒÔÏàͬµÄËٶȾ­¹ýAµãµÄÔ˶¯Ê±¼ä£¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø