ÌâÄ¿ÄÚÈÝ
6£®ÈçͼËùʾ£¬Ïà¾àΪb¡¢°å¼äµçѹΪUµÄƽÐнðÊô°åM¡¢N¼äÓд¹Ö±Ö½ÃæÏòÀï¡¢´Å¸ÐӦǿ¶ÈΪB0µÄÔÈÇ¿´Å³¡£»ÔÚpOyÇøÓòÄÚÓд¹Ö±Ö½ÃæÏòÍâ¡¢´Å¸ÐӦǿ¶ÈΪBµÄÔÈÇ¿´Å³¡£»pOxÇøÓòΪÎÞ³¡Çø£®Ò»ÕýÀë×ÓÑØÆ½ÐÐÓÚ½ðÊô°å¡¢´¹Ö±´Å³¡ÉäÈëÁ½°å¼ä²¢×öÔÈËÙÖ±ÏßÔ˶¯£¬´ÓH£¨0£¬2b£©µã´¹Ö±yÖá½øÈëµÚ¢ñÏóÏÞ£®£¨1£©ÇóÀë×ÓÔÚÆ½ÐнðÊô°å¼äµÄÔ˶¯ËÙ¶È£»
£¨2£©ÈôÀë×Ó¾OpÉÏijµãÀ뿪´Å³¡£¬×îºó´¹Ö±xÖáÀ뿪µÚ¢ñÏóÏÞ£¬ÇóÀë×ÓÔÚµÚ¢ñÏóÏ޴ų¡ÇøÓòµÄÔ˶¯Ê±¼ä£»
£¨3£©ÒªÊ¹Àë×ÓÒ»¶¨ÄÜ´òÔÚxÖáÉÏ£¬ÔòÀë×ӵĺÉÖʱÈ$\frac{q}{m}$Ó¦Âú×ãʲôÌõ¼þ£¿
·ÖÎö £¨1£©ÕýÀë×ÓÑØÆ½ÐÐÓÚ½ðÊô°å´¹Ö±´Å³¡ÉäÈëÁ½°å¼ä×öÔÈËÙÖ±ÏßÔ˶¯Ê±£¬ÂåÂ××ÈÁ¦Óëµç³¡Á¦Æ½ºâ£¬ÓÉÆ½ºâÌõ¼þºÍE0=$\frac{U}{d}$½áºÏ¿ÉÇó³öÀë×ÓÔÚÆ½ÐнðÊô°å¼äµÄÔ˶¯ËÙ¶È£®
£¨2£©Àë×ÓÔڴų¡ÖÐÔ˶¯$\frac{1}{4}$Ȧºó´ÓOpÉÏÀ뿪´Å³¡£¬¿ÉÇó³öÀë×ÓÔڴų¡ÖÐÔ˶¯Ê±¼ä$\frac{T}{4}$£¬À뿪´Å³¡ºóÀë×Ó×öÔÈËÙÖ±ÏßÔ˶¯£¬Óɼ¸ºÎ֪ʶÇó³öÎ»ÒÆ£¬¼´¿ÉÇó³öʱ¼ä£®
£¨3£©´øµçÁ£×Ó½øÈëpOyÇøÓò×öÔÈËÙÔ²ÖÜÔ˶¯£¬¾ÝÌâÓɼ¸ºÎ¹ØÏµ¿ÉÇó³öÔ²ÖÜÔ˶¯µÄ°ë¾¶£®Ôڴų¡ÖÐÓÉÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬¿ÉÇó³ö±ÈºÉµÄ·¶Î§£®
½â´ð
½â£º£¨1£©Àë×ÓÔÚÆ½ÐаåÄÚÔÈËÙÖ±ÏßÔ˶¯£¬Òò´ËÓÐ qvB0=qE
ÓÖE=$\frac{U}{d}$
½âµÃÀë×ÓÔÚÆ½ÐаåÄÚµÄËÙ¶ÈΪv=$\frac{U}{d{B}_{0}}$
£¨2£©ÈçͼΪÀë×ÓÔÚµÚIÏóÏ޴ų¡ÇøÓòÄÚÔ˶¯µÄ¹ì¼£Í¼£¬
Óɼ¸ºÎ¹ØÏµµÃ£¬¹ì¼£°ë¾¶Îªr=$\frac{a}{2}$£¬
¹ì¼£¶ÔÓ¦µÄÔ²ÐĽÇΪ¦È=$\frac{¦Ð}{2}$
Ô˶¯ÖÜÆÚΪT=$\frac{2¦Ðr}{v}$=$\frac{¦Ðad{B}_{0}}{U}$
Ô˶¯Ê±¼äΪt=$\frac{¦È}{2¦Ð}$•T=$\frac{1}{4}$•T=$\frac{¦Ðad{B}_{0}}{4U}$
£¨3£©ÒªÊ¹Àë×ÓÒ»¶¨ÄÜ´òÔÚxÖáÉÏ£¬Àë×ÓÔڴų¡BÖÐÔ˶¯£¬µ±¹ì¼£ÓëOPÏàÇÐʱ£¬Ô²µÄ×îС°ë¾¶ÈçͼËùʾ![]()
Óɼ¸ºÎ¹ØÏµr2+$\sqrt{2}$r2=a µÃr2=$\frac{a}{1+\sqrt{2}}$
ÓÉqvB=m$\frac{{v}^{2}}{{r}_{2}}$ µÃ
$\frac{q}{m}$
=$\frac{v}{B{r}_{2}}$=£¨1+$\sqrt{2}$£©$\frac{U}{d{B}_{0}Ba}$
¼´$\frac{q}{m}$±ØÐëСÓÚ£¨1+$\sqrt{2}$£©$\frac{U}{d{B}_{0}Ba}$£®
´ð£º£¨1£©Àë×ÓÔÚÆ½ÐнðÊô°å¼äµÄÔ˶¯ËÙ¶È$\frac{U}{d{B}_{0}}$£»
£¨2£©Àë×ÓÔÚµÚ¢ñÏóÏ޴ų¡ÇøÓòµÄÔ˶¯Ê±¼ä$\frac{¦Ðad{B}_{0}}{4U}$£»
£¨3£©$\frac{q}{m}$±ØÐëСÓÚ£¨1+$\sqrt{2}$£©$\frac{U}{d{B}_{0}Ba}$£®
µãÆÀ ±¾ÌâÖÐÀë×ÓÔÚ¸´ºÏ³¡ÖÐÔ˶¯µÄÎÊÌâÊÇËÙ¶ÈÑ¡ÔñÆ÷µÄÄ£ÐÍ£¬¶øÔڴų¡ÖÐÔ˶¯ÎªÔÈËÙÔ²ÖÜÔ˶¯£¬Òª×¢ÒâÔڴų¡Öл¹ì¼££¬Óɼ¸ºÎ֪ʶÇó½â°ë¾¶¡¢ÓÉÔ²ÐĽÇÈ·¶¨Ê±¼ä¶¼Êdz£¹æË¼Â·£®
| A£® | ͨ¹ýÓõçÆ÷£¬µçÄܲ»¿ÉÄÜÈ«²¿×ª»¯ÎªÄÚÄÜ | |
| B£® | ÔÚ»ðÁ¦·¢µçÕ¾ÖУ¬È¼ÁϵÄÄÚÄÜÄܹ»È«²¿×ª»¯ÎªµçÄÜ | |
| C£® | ÈÈ»úÖУ¬È¼ÆøÄÚÄܲ»¿ÉÄÜÈ«²¿×ª»¯Îª»úеÄÜ | |
| D£® | ÔÚÈÈ´«µ¼ÖУ¬ÈÈÁ¿ÓпÉÄÜ×Ô·¢µØ´ÓµÍÎÂÎïÌå´«µÝ¸ø¸ßζÈÎïÌå |
| A£® | $\frac{4¡÷t}{4k+1}$ | B£® | $\frac{4¡÷t}{4k+3}$ | C£® | $\frac{4£¨t+¡÷t£©}{4t+1}$ | D£® | $\frac{¡÷t}{4k+1}$ |
| A£® | µ¯»É³Ó¶ÁÊý±ä´ó | B£® | µ¯»É³Ó¶ÁÊý±äС | ||
| C£® | С³µ¶ÔµØÃæµÄѹÁ¦±ä´ó | D£® | С³µ¶ÔµØÃæµÄѹÁ¦²»±ä |
| A£® | ÖʵãP¡¢QµÄÆðÕñ·½Ïò¶¼ÑØyÖáÕý·½Ïò | |
| B£® | t=1.5sʱ¿Ì£¬ÖʵãP¡¢Q¶¼´¦ÓÚÆ½ºâλÖà | |
| C£® | t=1.5sʱ¿Ì֮ǰ£¬ÖʵãMʼÖÕ´¦ÓÚ¾²Ö¹×´Ì¬ | |
| D£® | t=2.5sʱMµã´¦ÓÚÆ½ºâλÖÃÏòyÖáÕý·½ÏòÔ˶¯ | |
| E£® | Mµã¿ªÊ¼Õñ¶¯ºó×öÕñ¸£Îª2cm£¬ÖÜÆÚΪ2sµÄ¼òгÔ˶¯ |
| A£® | Îï¿éÏ»¬µÄ¼ÓËÙ¶È´óСΪ1m/s2 | B£® | Ð±ÃæµÄÇã½ÇΪ30¡ã | ||
| C£® | ÎïÌåÓëÐ±Ãæ¼äµÄ¶¯Ä¦²ÁÒòÊýΪ$\frac{\sqrt{3}}{3}$ | D£® | Îï¿éÏòÉÏ»¬ÐеÄ×î´ó¾àÀëΪ1m |
| A£® | µç¶¯ÊƱíÕ÷Á˵çÔ´°ÑÆäËüÐÎʽµÄÄÜת»¯ÎªµçÊÆÄܱ¾ÁìµÄ´óС | |
| B£® | ÔÚµçÔ´ÄÚ²¿Òƶ¯µçºÉʱ£¬·Ç¾²µçÁ¦×öÕý¹¦£¬µçÊÆÄÜÔö¼Ó | |
| C£® | ÔÚµçÔ´ÄÚ²¿Òƶ¯µçºÉʱ£¬·Ç¾²µçÁ¦×ö¹¦Ô½¶à£¬µçÔ´µÄµç¶¯ÊƾÍÔ½´ó | |
| D£® | µç¶¯ÊÆ´óСÓɵçÔ´×ÔÉíÐÔÖʾö¶¨ |